bitcoin/test/functional/test_framework/wallet.py
merge-script 5ee6b76c69
Merge bitcoin/bitcoin#29325: consensus: Store transaction nVersion as uint32_t
429ec1aaaa refactor: Rename CTransaction::nVersion to version (Ava Chow)
27e70f1f5b consensus: Store transaction nVersion as uint32_t (Ava Chow)

Pull request description:

  Given that the use of a transaction's nVersion is always as an unsigned int, it doesn't make sense to store it as signed and then cast it to unsigned everywhere it is used and displayed.

  Since a few alternative implementations have recently been revealed to have made an error with this signedness that would have resulted in consensus failure, I think it makes sense for us to just make this always unsigned to make it clear that the version is treated as unsigned. This would also help us avoid future potential issues with signedness of this value.

  I believe that this is safe and does not actually change what transactions would or would not be considered both standard and consensus valid. Within consensus, the only use of the version in consensus is in BIP68 validation which was already casting it to uint32_t. Within policy, although it is used as a signed int for the transaction version number check, I do not think that this change would change standardness. Standard transactions are limited to the range [1, 2]. Negative numbers would have fallen under the < 1 condition, but by making it unsigned, they are still non-standard under the > 2 condition.

  Unsigned and signed ints are serialized and unserialized the same way so there is no change in serialization.

ACKs for top commit:
  maflcko:
    ACK 429ec1aaaa 🐿
  glozow:
    ACK 429ec1aaaa
  shaavan:
    ACK 429ec1aaaa 💯

Tree-SHA512: 0bcd92a245d7d16c3665d2d4e815a4ef28207ad4a1fb46c6f0203cdafeab1b82c4e95e4bdce7805d80a4f4a46074f6542abad708e970550d38a00d759e3dcef1
2024-06-12 10:32:31 +01:00

452 lines
20 KiB
Python

#!/usr/bin/env python3
# Copyright (c) 2020-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""A limited-functionality wallet, which may replace a real wallet in tests"""
from copy import deepcopy
from decimal import Decimal
from enum import Enum
import math
from typing import (
Any,
Optional,
)
from test_framework.address import (
address_to_scriptpubkey,
create_deterministic_address_bcrt1_p2tr_op_true,
key_to_p2pkh,
key_to_p2sh_p2wpkh,
key_to_p2wpkh,
output_key_to_p2tr,
)
from test_framework.blocktools import COINBASE_MATURITY
from test_framework.descriptors import descsum_create
from test_framework.key import (
ECKey,
compute_xonly_pubkey,
)
from test_framework.messages import (
COIN,
COutPoint,
CTransaction,
CTxIn,
CTxInWitness,
CTxOut,
hash256,
ser_compact_size,
WITNESS_SCALE_FACTOR,
)
from test_framework.script import (
CScript,
LEAF_VERSION_TAPSCRIPT,
OP_1,
OP_NOP,
OP_RETURN,
OP_TRUE,
sign_input_legacy,
taproot_construct,
)
from test_framework.script_util import (
key_to_p2pk_script,
key_to_p2pkh_script,
key_to_p2sh_p2wpkh_script,
key_to_p2wpkh_script,
)
from test_framework.util import (
assert_equal,
assert_greater_than_or_equal,
get_fee,
)
from test_framework.wallet_util import generate_keypair
DEFAULT_FEE = Decimal("0.0001")
class MiniWalletMode(Enum):
"""Determines the transaction type the MiniWallet is creating and spending.
For most purposes, the default mode ADDRESS_OP_TRUE should be sufficient;
it simply uses a fixed bech32m P2TR address whose coins are spent with a
witness stack of OP_TRUE, i.e. following an anyone-can-spend policy.
However, if the transactions need to be modified by the user (e.g. prepending
scriptSig for testing opcodes that are activated by a soft-fork), or the txs
should contain an actual signature, the raw modes RAW_OP_TRUE and RAW_P2PK
can be useful. In order to avoid mixing of UTXOs between different MiniWallet
instances, a tag name can be passed to the default mode, to create different
output scripts. Note that the UTXOs from the pre-generated test chain can
only be spent if no tag is passed. Summary of modes:
| output | | tx is | can modify | needs
mode | description | address | standard | scriptSig | signing
----------------+-------------------+-----------+----------+------------+----------
ADDRESS_OP_TRUE | anyone-can-spend | bech32m | yes | no | no
RAW_OP_TRUE | anyone-can-spend | - (raw) | no | yes | no
RAW_P2PK | pay-to-public-key | - (raw) | yes | yes | yes
"""
ADDRESS_OP_TRUE = 1
RAW_OP_TRUE = 2
RAW_P2PK = 3
class MiniWallet:
def __init__(self, test_node, *, mode=MiniWalletMode.ADDRESS_OP_TRUE, tag_name=None):
self._test_node = test_node
self._utxos = []
self._mode = mode
assert isinstance(mode, MiniWalletMode)
if mode == MiniWalletMode.RAW_OP_TRUE:
assert tag_name is None
self._scriptPubKey = bytes(CScript([OP_TRUE]))
elif mode == MiniWalletMode.RAW_P2PK:
# use simple deterministic private key (k=1)
assert tag_name is None
self._priv_key = ECKey()
self._priv_key.set((1).to_bytes(32, 'big'), True)
pub_key = self._priv_key.get_pubkey()
self._scriptPubKey = key_to_p2pk_script(pub_key.get_bytes())
elif mode == MiniWalletMode.ADDRESS_OP_TRUE:
internal_key = None if tag_name is None else hash256(tag_name.encode())
self._address, self._internal_key = create_deterministic_address_bcrt1_p2tr_op_true(internal_key)
self._scriptPubKey = address_to_scriptpubkey(self._address)
# When the pre-mined test framework chain is used, it contains coinbase
# outputs to the MiniWallet's default address in blocks 76-100
# (see method BitcoinTestFramework._initialize_chain())
# The MiniWallet needs to rescan_utxos() in order to account
# for those mature UTXOs, so that all txs spend confirmed coins
self.rescan_utxos()
def _create_utxo(self, *, txid, vout, value, height, coinbase, confirmations):
return {"txid": txid, "vout": vout, "value": value, "height": height, "coinbase": coinbase, "confirmations": confirmations}
def _bulk_tx(self, tx, target_weight):
"""Pad a transaction with extra outputs until it reaches a target weight (or higher).
returns the tx
"""
tx.vout.append(CTxOut(nValue=0, scriptPubKey=CScript([OP_RETURN])))
# determine number of needed padding bytes by converting weight difference to vbytes
dummy_vbytes = (target_weight - tx.get_weight() + 3) // 4
# compensate for the increase of the compact-size encoded script length
# (note that the length encoding of the unpadded output script needs one byte)
dummy_vbytes -= len(ser_compact_size(dummy_vbytes)) - 1
tx.vout[-1].scriptPubKey = CScript([OP_RETURN] + [OP_1] * dummy_vbytes)
# Actual weight should be at most 3 higher than target weight
assert_greater_than_or_equal(tx.get_weight(), target_weight)
assert_greater_than_or_equal(target_weight + 3, tx.get_weight())
def get_balance(self):
return sum(u['value'] for u in self._utxos)
def rescan_utxos(self, *, include_mempool=True):
"""Drop all utxos and rescan the utxo set"""
self._utxos = []
res = self._test_node.scantxoutset(action="start", scanobjects=[self.get_descriptor()])
assert_equal(True, res['success'])
for utxo in res['unspents']:
self._utxos.append(
self._create_utxo(txid=utxo["txid"],
vout=utxo["vout"],
value=utxo["amount"],
height=utxo["height"],
coinbase=utxo["coinbase"],
confirmations=res["height"] - utxo["height"] + 1))
if include_mempool:
mempool = self._test_node.getrawmempool(verbose=True)
# Sort tx by ancestor count. See BlockAssembler::SortForBlock in src/node/miner.cpp
sorted_mempool = sorted(mempool.items(), key=lambda item: (item[1]["ancestorcount"], int(item[0], 16)))
for txid, _ in sorted_mempool:
self.scan_tx(self._test_node.getrawtransaction(txid=txid, verbose=True))
def scan_tx(self, tx):
"""Scan the tx and adjust the internal list of owned utxos"""
for spent in tx["vin"]:
# Mark spent. This may happen when the caller has ownership of a
# utxo that remained in this wallet. For example, by passing
# mark_as_spent=False to get_utxo or by using an utxo returned by a
# create_self_transfer* call.
try:
self.get_utxo(txid=spent["txid"], vout=spent["vout"])
except StopIteration:
pass
for out in tx['vout']:
if out['scriptPubKey']['hex'] == self._scriptPubKey.hex():
self._utxos.append(self._create_utxo(txid=tx["txid"], vout=out["n"], value=out["value"], height=0, coinbase=False, confirmations=0))
def scan_txs(self, txs):
for tx in txs:
self.scan_tx(tx)
def sign_tx(self, tx, fixed_length=True):
if self._mode == MiniWalletMode.RAW_P2PK:
# for exact fee calculation, create only signatures with fixed size by default (>49.89% probability):
# 65 bytes: high-R val (33 bytes) + low-S val (32 bytes)
# with the DER header/skeleton data of 6 bytes added, plus 2 bytes scriptSig overhead
# (OP_PUSHn and SIGHASH_ALL), this leads to a scriptSig target size of 73 bytes
tx.vin[0].scriptSig = b''
while not len(tx.vin[0].scriptSig) == 73:
tx.vin[0].scriptSig = b''
sign_input_legacy(tx, 0, self._scriptPubKey, self._priv_key)
if not fixed_length:
break
elif self._mode == MiniWalletMode.RAW_OP_TRUE:
for i in tx.vin:
i.scriptSig = CScript([OP_NOP] * 43) # pad to identical size
elif self._mode == MiniWalletMode.ADDRESS_OP_TRUE:
tx.wit.vtxinwit = [CTxInWitness()] * len(tx.vin)
for i in tx.wit.vtxinwit:
i.scriptWitness.stack = [CScript([OP_TRUE]), bytes([LEAF_VERSION_TAPSCRIPT]) + self._internal_key]
else:
assert False
def generate(self, num_blocks, **kwargs):
"""Generate blocks with coinbase outputs to the internal address, and call rescan_utxos"""
blocks = self._test_node.generatetodescriptor(num_blocks, self.get_descriptor(), **kwargs)
# Calling rescan_utxos here makes sure that after a generate the utxo
# set is in a clean state. For example, the wallet will update
# - if the caller consumed utxos, but never used them
# - if the caller sent a transaction that is not mined or got rbf'd
# - after block re-orgs
# - the utxo height for mined mempool txs
# - However, the wallet will not consider remaining mempool txs
self.rescan_utxos()
return blocks
def get_scriptPubKey(self):
return self._scriptPubKey
def get_descriptor(self):
return descsum_create(f'raw({self._scriptPubKey.hex()})')
def get_address(self):
assert_equal(self._mode, MiniWalletMode.ADDRESS_OP_TRUE)
return self._address
def get_utxo(self, *, txid: str = '', vout: Optional[int] = None, mark_as_spent=True, confirmed_only=False) -> dict:
"""
Returns a utxo and marks it as spent (pops it from the internal list)
Args:
txid: get the first utxo we find from a specific transaction
"""
self._utxos = sorted(self._utxos, key=lambda k: (k['value'], -k['height'])) # Put the largest utxo last
blocks_height = self._test_node.getblockchaininfo()['blocks']
mature_coins = list(filter(lambda utxo: not utxo['coinbase'] or COINBASE_MATURITY - 1 <= blocks_height - utxo['height'], self._utxos))
if txid:
utxo_filter: Any = filter(lambda utxo: txid == utxo['txid'], self._utxos)
else:
utxo_filter = reversed(mature_coins) # By default the largest utxo
if vout is not None:
utxo_filter = filter(lambda utxo: vout == utxo['vout'], utxo_filter)
if confirmed_only:
utxo_filter = filter(lambda utxo: utxo['confirmations'] > 0, utxo_filter)
index = self._utxos.index(next(utxo_filter))
if mark_as_spent:
return self._utxos.pop(index)
else:
return self._utxos[index]
def get_utxos(self, *, include_immature_coinbase=False, mark_as_spent=True, confirmed_only=False):
"""Returns the list of all utxos and optionally mark them as spent"""
if not include_immature_coinbase:
blocks_height = self._test_node.getblockchaininfo()['blocks']
utxo_filter = filter(lambda utxo: not utxo['coinbase'] or COINBASE_MATURITY - 1 <= blocks_height - utxo['height'], self._utxos)
else:
utxo_filter = self._utxos
if confirmed_only:
utxo_filter = filter(lambda utxo: utxo['confirmations'] > 0, utxo_filter)
utxos = deepcopy(list(utxo_filter))
if mark_as_spent:
self._utxos = []
return utxos
def send_self_transfer(self, *, from_node, **kwargs):
"""Call create_self_transfer and send the transaction."""
tx = self.create_self_transfer(**kwargs)
self.sendrawtransaction(from_node=from_node, tx_hex=tx['hex'])
return tx
def send_to(self, *, from_node, scriptPubKey, amount, fee=1000):
"""
Create and send a tx with an output to a given scriptPubKey/amount,
plus a change output to our internal address. To keep things simple, a
fixed fee given in Satoshi is used.
Note that this method fails if there is no single internal utxo
available that can cover the cost for the amount and the fixed fee
(the utxo with the largest value is taken).
"""
tx = self.create_self_transfer(fee_rate=0)["tx"]
assert_greater_than_or_equal(tx.vout[0].nValue, amount + fee)
tx.vout[0].nValue -= (amount + fee) # change output -> MiniWallet
tx.vout.append(CTxOut(amount, scriptPubKey)) # arbitrary output -> to be returned
txid = self.sendrawtransaction(from_node=from_node, tx_hex=tx.serialize().hex())
return {
"sent_vout": 1,
"txid": txid,
"wtxid": tx.getwtxid(),
"hex": tx.serialize().hex(),
"tx": tx,
}
def send_self_transfer_multi(self, *, from_node, **kwargs):
"""Call create_self_transfer_multi and send the transaction."""
tx = self.create_self_transfer_multi(**kwargs)
self.sendrawtransaction(from_node=from_node, tx_hex=tx["hex"])
return tx
def create_self_transfer_multi(
self,
*,
utxos_to_spend: Optional[list[dict]] = None,
num_outputs=1,
amount_per_output=0,
version=2,
locktime=0,
sequence=0,
fee_per_output=1000,
target_weight=0,
confirmed_only=False,
):
"""
Create and return a transaction that spends the given UTXOs and creates a
certain number of outputs with equal amounts. The output amounts can be
set by amount_per_output or automatically calculated with a fee_per_output.
"""
utxos_to_spend = utxos_to_spend or [self.get_utxo(confirmed_only=confirmed_only)]
sequence = [sequence] * len(utxos_to_spend) if type(sequence) is int else sequence
assert_equal(len(utxos_to_spend), len(sequence))
# calculate output amount
inputs_value_total = sum([int(COIN * utxo['value']) for utxo in utxos_to_spend])
outputs_value_total = inputs_value_total - fee_per_output * num_outputs
amount_per_output = amount_per_output or (outputs_value_total // num_outputs)
assert amount_per_output > 0
outputs_value_total = amount_per_output * num_outputs
fee = Decimal(inputs_value_total - outputs_value_total) / COIN
# create tx
tx = CTransaction()
tx.vin = [CTxIn(COutPoint(int(utxo_to_spend['txid'], 16), utxo_to_spend['vout']), nSequence=seq) for utxo_to_spend, seq in zip(utxos_to_spend, sequence)]
tx.vout = [CTxOut(amount_per_output, bytearray(self._scriptPubKey)) for _ in range(num_outputs)]
tx.version = version
tx.nLockTime = locktime
self.sign_tx(tx)
if target_weight:
self._bulk_tx(tx, target_weight)
txid = tx.rehash()
return {
"new_utxos": [self._create_utxo(
txid=txid,
vout=i,
value=Decimal(tx.vout[i].nValue) / COIN,
height=0,
coinbase=False,
confirmations=0,
) for i in range(len(tx.vout))],
"fee": fee,
"txid": txid,
"wtxid": tx.getwtxid(),
"hex": tx.serialize().hex(),
"tx": tx,
}
def create_self_transfer(
self,
*,
fee_rate=Decimal("0.003"),
fee=Decimal("0"),
utxo_to_spend=None,
target_weight=0,
confirmed_only=False,
**kwargs,
):
"""Create and return a tx with the specified fee. If fee is 0, use fee_rate, where the resulting fee may be exact or at most one satoshi higher than needed."""
utxo_to_spend = utxo_to_spend or self.get_utxo(confirmed_only=confirmed_only)
assert fee_rate >= 0
assert fee >= 0
# calculate fee
if self._mode in (MiniWalletMode.RAW_OP_TRUE, MiniWalletMode.ADDRESS_OP_TRUE):
vsize = Decimal(104) # anyone-can-spend
elif self._mode == MiniWalletMode.RAW_P2PK:
vsize = Decimal(168) # P2PK (73 bytes scriptSig + 35 bytes scriptPubKey + 60 bytes other)
else:
assert False
if target_weight and not fee: # respect fee_rate if target weight is passed
# the actual weight might be off by 3 WUs, so calculate based on that (see self._bulk_tx)
max_actual_weight = target_weight + 3
fee = get_fee(math.ceil(max_actual_weight / WITNESS_SCALE_FACTOR), fee_rate)
send_value = utxo_to_spend["value"] - (fee or (fee_rate * vsize / 1000))
# create tx
tx = self.create_self_transfer_multi(
utxos_to_spend=[utxo_to_spend],
amount_per_output=int(COIN * send_value),
target_weight=target_weight,
**kwargs,
)
if not target_weight:
assert_equal(tx["tx"].get_vsize(), vsize)
tx["new_utxo"] = tx.pop("new_utxos")[0]
return tx
def sendrawtransaction(self, *, from_node, tx_hex, maxfeerate=0, **kwargs):
txid = from_node.sendrawtransaction(hexstring=tx_hex, maxfeerate=maxfeerate, **kwargs)
self.scan_tx(from_node.decoderawtransaction(tx_hex))
return txid
def create_self_transfer_chain(self, *, chain_length, utxo_to_spend=None):
"""
Create a "chain" of chain_length transactions. The nth transaction in
the chain is a child of the n-1th transaction and parent of the n+1th transaction.
"""
chaintip_utxo = utxo_to_spend or self.get_utxo()
chain = []
for _ in range(chain_length):
tx = self.create_self_transfer(utxo_to_spend=chaintip_utxo)
chaintip_utxo = tx["new_utxo"]
chain.append(tx)
return chain
def send_self_transfer_chain(self, *, from_node, **kwargs):
"""Create and send a "chain" of chain_length transactions. The nth transaction in
the chain is a child of the n-1th transaction and parent of the n+1th transaction.
Returns a list of objects for each tx (see create_self_transfer_multi).
"""
chain = self.create_self_transfer_chain(**kwargs)
for t in chain:
self.sendrawtransaction(from_node=from_node, tx_hex=t["hex"])
return chain
def getnewdestination(address_type='bech32m'):
"""Generate a random destination of the specified type and return the
corresponding public key, scriptPubKey and address. Supported types are
'legacy', 'p2sh-segwit', 'bech32' and 'bech32m'. Can be used when a random
destination is needed, but no compiled wallet is available (e.g. as
replacement to the getnewaddress/getaddressinfo RPCs)."""
key, pubkey = generate_keypair()
if address_type == 'legacy':
scriptpubkey = key_to_p2pkh_script(pubkey)
address = key_to_p2pkh(pubkey)
elif address_type == 'p2sh-segwit':
scriptpubkey = key_to_p2sh_p2wpkh_script(pubkey)
address = key_to_p2sh_p2wpkh(pubkey)
elif address_type == 'bech32':
scriptpubkey = key_to_p2wpkh_script(pubkey)
address = key_to_p2wpkh(pubkey)
elif address_type == 'bech32m':
tap = taproot_construct(compute_xonly_pubkey(key.get_bytes())[0])
pubkey = tap.output_pubkey
scriptpubkey = tap.scriptPubKey
address = output_key_to_p2tr(pubkey)
else:
assert False
return pubkey, scriptpubkey, address