bitcoin/src/coins.cpp
Ryan Ofsky 17372d788e
Some checks are pending
CI / ASan + LSan + UBSan + integer, no depends, USDT (push) Waiting to run
CI / Win64 native, VS 2022 (push) Waiting to run
CI / Win64 native fuzz, VS 2022 (push) Waiting to run
CI / test each commit (push) Waiting to run
CI / macOS 14 native, arm64, no depends, sqlite only, gui (push) Waiting to run
CI / macOS 14 native, arm64, fuzz (push) Waiting to run
Merge bitcoin/bitcoin#30906: refactor: prohibit direct flags access in CCoinsCacheEntry and remove invalid tests
50cce20013 test, refactor: Compact ccoins_access and ccoins_spend (Lőrinc)
0a159f0914 test, refactor: Remove remaining unbounded flags from coins_tests (Lőrinc)
c0b4b2c1ee test: Validate error messages on fail (Lőrinc)
d5f8d607ab test: Group values and states in tests into CoinEntry wrappers (Lőrinc)
ca74aa7490 test, refactor: Migrate GetCoinsMapEntry to return MaybeCoin (Lőrinc)
15aaa81c38 coins, refactor: Remove direct GetFlags access (Lőrinc)
6b733699cf coins, refactor: Assume state after SetClean in AddFlags to prevent dangling pointers (Lőrinc)
fc8c282022 coins, refactor: Make AddFlags, SetDirty, SetFresh static (Lőrinc)
cd0498eabc coins, refactor: Split up AddFlags to remove invalid states (Lőrinc)

Pull request description:

  Similarly to https://github.com/bitcoin/bitcoin/pull/30849, this cleanup is intended to de-risk https://github.com/bitcoin/bitcoin/pull/30673#discussion_r1739909068 by simplifying the coin cache public interface.

  `CCoinsCacheEntry` provided general access to its internal flags state, even though, in reality, it could only be `clean`, `fresh`, `dirty`, or `fresh|dirty` (in the follow-up, we will remove `fresh` without `dirty`).

  Once it was marked as `dirty`, we couldn’t set the state back to clean with `AddFlags(0)`—tests explicitly checked against that.

  This PR refines the public interface to make this distinction clearer and to make invalid behavior impossible, rather than just checked by tests. We don't need extensive access to the internals of `CCoinsCacheEntry`, as many tests were simply validating invalid combinations in this way.

  The last few commits contain significant test refactorings to make `coins_tests` easier to change in follow-ups.

ACKs for top commit:
  andrewtoth:
    Code Review ACK 50cce20013
  laanwj:
    Code review ACK 50cce20013
  ryanofsky:
    Code review ACK 50cce20013. Looks good! Thanks for the followups.

Tree-SHA512: c0d65f1c7680b4bb9cd368422b218f2473c2ec75a32c7350a6e11e8a1601c81d3c0ae651b9f1dae08400fb4e5d43431d9e4ccca305a718183f9a936fe47c1a6c
2024-12-04 14:09:05 -05:00

388 lines
16 KiB
C++

// Copyright (c) 2012-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <coins.h>
#include <consensus/consensus.h>
#include <logging.h>
#include <random.h>
#include <util/trace.h>
TRACEPOINT_SEMAPHORE(utxocache, add);
TRACEPOINT_SEMAPHORE(utxocache, spent);
TRACEPOINT_SEMAPHORE(utxocache, uncache);
std::optional<Coin> CCoinsView::GetCoin(const COutPoint& outpoint) const { return std::nullopt; }
uint256 CCoinsView::GetBestBlock() const { return uint256(); }
std::vector<uint256> CCoinsView::GetHeadBlocks() const { return std::vector<uint256>(); }
bool CCoinsView::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlock) { return false; }
std::unique_ptr<CCoinsViewCursor> CCoinsView::Cursor() const { return nullptr; }
bool CCoinsView::HaveCoin(const COutPoint &outpoint) const
{
return GetCoin(outpoint).has_value();
}
CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { }
std::optional<Coin> CCoinsViewBacked::GetCoin(const COutPoint& outpoint) const { return base->GetCoin(outpoint); }
bool CCoinsViewBacked::HaveCoin(const COutPoint &outpoint) const { return base->HaveCoin(outpoint); }
uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); }
std::vector<uint256> CCoinsViewBacked::GetHeadBlocks() const { return base->GetHeadBlocks(); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlock) { return base->BatchWrite(cursor, hashBlock); }
std::unique_ptr<CCoinsViewCursor> CCoinsViewBacked::Cursor() const { return base->Cursor(); }
size_t CCoinsViewBacked::EstimateSize() const { return base->EstimateSize(); }
CCoinsViewCache::CCoinsViewCache(CCoinsView* baseIn, bool deterministic) :
CCoinsViewBacked(baseIn), m_deterministic(deterministic),
cacheCoins(0, SaltedOutpointHasher(/*deterministic=*/deterministic), CCoinsMap::key_equal{}, &m_cache_coins_memory_resource)
{
m_sentinel.second.SelfRef(m_sentinel);
}
size_t CCoinsViewCache::DynamicMemoryUsage() const {
return memusage::DynamicUsage(cacheCoins) + cachedCoinsUsage;
}
CCoinsMap::iterator CCoinsViewCache::FetchCoin(const COutPoint &outpoint) const {
const auto [ret, inserted] = cacheCoins.try_emplace(outpoint);
if (inserted) {
if (auto coin{base->GetCoin(outpoint)}) {
ret->second.coin = std::move(*coin);
cachedCoinsUsage += ret->second.coin.DynamicMemoryUsage();
if (ret->second.coin.IsSpent()) { // TODO GetCoin cannot return spent coins
// The parent only has an empty entry for this outpoint; we can consider our version as fresh.
CCoinsCacheEntry::SetFresh(*ret, m_sentinel);
}
} else {
cacheCoins.erase(ret);
return cacheCoins.end();
}
}
return ret;
}
std::optional<Coin> CCoinsViewCache::GetCoin(const COutPoint& outpoint) const
{
if (auto it{FetchCoin(outpoint)}; it != cacheCoins.end() && !it->second.coin.IsSpent()) return it->second.coin;
return std::nullopt;
}
void CCoinsViewCache::AddCoin(const COutPoint &outpoint, Coin&& coin, bool possible_overwrite) {
assert(!coin.IsSpent());
if (coin.out.scriptPubKey.IsUnspendable()) return;
CCoinsMap::iterator it;
bool inserted;
std::tie(it, inserted) = cacheCoins.emplace(std::piecewise_construct, std::forward_as_tuple(outpoint), std::tuple<>());
bool fresh = false;
if (!inserted) {
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
}
if (!possible_overwrite) {
if (!it->second.coin.IsSpent()) {
throw std::logic_error("Attempted to overwrite an unspent coin (when possible_overwrite is false)");
}
// If the coin exists in this cache as a spent coin and is DIRTY, then
// its spentness hasn't been flushed to the parent cache. We're
// re-adding the coin to this cache now but we can't mark it as FRESH.
// If we mark it FRESH and then spend it before the cache is flushed
// we would remove it from this cache and would never flush spentness
// to the parent cache.
//
// Re-adding a spent coin can happen in the case of a re-org (the coin
// is 'spent' when the block adding it is disconnected and then
// re-added when it is also added in a newly connected block).
//
// If the coin doesn't exist in the current cache, or is spent but not
// DIRTY, then it can be marked FRESH.
fresh = !it->second.IsDirty();
}
it->second.coin = std::move(coin);
CCoinsCacheEntry::SetDirty(*it, m_sentinel);
if (fresh) CCoinsCacheEntry::SetFresh(*it, m_sentinel);
cachedCoinsUsage += it->second.coin.DynamicMemoryUsage();
TRACEPOINT(utxocache, add,
outpoint.hash.data(),
(uint32_t)outpoint.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
}
void CCoinsViewCache::EmplaceCoinInternalDANGER(COutPoint&& outpoint, Coin&& coin) {
cachedCoinsUsage += coin.DynamicMemoryUsage();
auto [it, inserted] = cacheCoins.try_emplace(std::move(outpoint), std::move(coin));
if (inserted) CCoinsCacheEntry::SetDirty(*it, m_sentinel);
}
void AddCoins(CCoinsViewCache& cache, const CTransaction &tx, int nHeight, bool check_for_overwrite) {
bool fCoinbase = tx.IsCoinBase();
const Txid& txid = tx.GetHash();
for (size_t i = 0; i < tx.vout.size(); ++i) {
bool overwrite = check_for_overwrite ? cache.HaveCoin(COutPoint(txid, i)) : fCoinbase;
// Coinbase transactions can always be overwritten, in order to correctly
// deal with the pre-BIP30 occurrences of duplicate coinbase transactions.
cache.AddCoin(COutPoint(txid, i), Coin(tx.vout[i], nHeight, fCoinbase), overwrite);
}
}
bool CCoinsViewCache::SpendCoin(const COutPoint &outpoint, Coin* moveout) {
CCoinsMap::iterator it = FetchCoin(outpoint);
if (it == cacheCoins.end()) return false;
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
TRACEPOINT(utxocache, spent,
outpoint.hash.data(),
(uint32_t)outpoint.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
if (moveout) {
*moveout = std::move(it->second.coin);
}
if (it->second.IsFresh()) {
cacheCoins.erase(it);
} else {
CCoinsCacheEntry::SetDirty(*it, m_sentinel);
it->second.coin.Clear();
}
return true;
}
static const Coin coinEmpty;
const Coin& CCoinsViewCache::AccessCoin(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = FetchCoin(outpoint);
if (it == cacheCoins.end()) {
return coinEmpty;
} else {
return it->second.coin;
}
}
bool CCoinsViewCache::HaveCoin(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = FetchCoin(outpoint);
return (it != cacheCoins.end() && !it->second.coin.IsSpent());
}
bool CCoinsViewCache::HaveCoinInCache(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = cacheCoins.find(outpoint);
return (it != cacheCoins.end() && !it->second.coin.IsSpent());
}
uint256 CCoinsViewCache::GetBestBlock() const {
if (hashBlock.IsNull())
hashBlock = base->GetBestBlock();
return hashBlock;
}
void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) {
hashBlock = hashBlockIn;
}
bool CCoinsViewCache::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlockIn) {
for (auto it{cursor.Begin()}; it != cursor.End(); it = cursor.NextAndMaybeErase(*it)) {
// Ignore non-dirty entries (optimization).
if (!it->second.IsDirty()) {
continue;
}
CCoinsMap::iterator itUs = cacheCoins.find(it->first);
if (itUs == cacheCoins.end()) {
// The parent cache does not have an entry, while the child cache does.
// We can ignore it if it's both spent and FRESH in the child
if (!(it->second.IsFresh() && it->second.coin.IsSpent())) {
// Create the coin in the parent cache, move the data up
// and mark it as dirty.
itUs = cacheCoins.try_emplace(it->first).first;
CCoinsCacheEntry& entry{itUs->second};
if (cursor.WillErase(*it)) {
// Since this entry will be erased,
// we can move the coin into us instead of copying it
entry.coin = std::move(it->second.coin);
} else {
entry.coin = it->second.coin;
}
cachedCoinsUsage += entry.coin.DynamicMemoryUsage();
CCoinsCacheEntry::SetDirty(*itUs, m_sentinel);
// We can mark it FRESH in the parent if it was FRESH in the child
// Otherwise it might have just been flushed from the parent's cache
// and already exist in the grandparent
if (it->second.IsFresh()) CCoinsCacheEntry::SetFresh(*itUs, m_sentinel);
}
} else {
// Found the entry in the parent cache
if (it->second.IsFresh() && !itUs->second.coin.IsSpent()) {
// The coin was marked FRESH in the child cache, but the coin
// exists in the parent cache. If this ever happens, it means
// the FRESH flag was misapplied and there is a logic error in
// the calling code.
throw std::logic_error("FRESH flag misapplied to coin that exists in parent cache");
}
if (itUs->second.IsFresh() && it->second.coin.IsSpent()) {
// The grandparent cache does not have an entry, and the coin
// has been spent. We can just delete it from the parent cache.
cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage();
cacheCoins.erase(itUs);
} else {
// A normal modification.
cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage();
if (cursor.WillErase(*it)) {
// Since this entry will be erased,
// we can move the coin into us instead of copying it
itUs->second.coin = std::move(it->second.coin);
} else {
itUs->second.coin = it->second.coin;
}
cachedCoinsUsage += itUs->second.coin.DynamicMemoryUsage();
CCoinsCacheEntry::SetDirty(*itUs, m_sentinel);
// NOTE: It isn't safe to mark the coin as FRESH in the parent
// cache. If it already existed and was spent in the parent
// cache then marking it FRESH would prevent that spentness
// from being flushed to the grandparent.
}
}
}
hashBlock = hashBlockIn;
return true;
}
bool CCoinsViewCache::Flush() {
auto cursor{CoinsViewCacheCursor(cachedCoinsUsage, m_sentinel, cacheCoins, /*will_erase=*/true)};
bool fOk = base->BatchWrite(cursor, hashBlock);
if (fOk) {
cacheCoins.clear();
ReallocateCache();
}
cachedCoinsUsage = 0;
return fOk;
}
bool CCoinsViewCache::Sync()
{
auto cursor{CoinsViewCacheCursor(cachedCoinsUsage, m_sentinel, cacheCoins, /*will_erase=*/false)};
bool fOk = base->BatchWrite(cursor, hashBlock);
if (fOk) {
if (m_sentinel.second.Next() != &m_sentinel) {
/* BatchWrite must clear flags of all entries */
throw std::logic_error("Not all unspent flagged entries were cleared");
}
}
return fOk;
}
void CCoinsViewCache::Uncache(const COutPoint& hash)
{
CCoinsMap::iterator it = cacheCoins.find(hash);
if (it != cacheCoins.end() && !it->second.IsDirty() && !it->second.IsFresh()) {
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
TRACEPOINT(utxocache, uncache,
hash.hash.data(),
(uint32_t)hash.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
cacheCoins.erase(it);
}
}
unsigned int CCoinsViewCache::GetCacheSize() const {
return cacheCoins.size();
}
bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const
{
if (!tx.IsCoinBase()) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
if (!HaveCoin(tx.vin[i].prevout)) {
return false;
}
}
}
return true;
}
void CCoinsViewCache::ReallocateCache()
{
// Cache should be empty when we're calling this.
assert(cacheCoins.size() == 0);
cacheCoins.~CCoinsMap();
m_cache_coins_memory_resource.~CCoinsMapMemoryResource();
::new (&m_cache_coins_memory_resource) CCoinsMapMemoryResource{};
::new (&cacheCoins) CCoinsMap{0, SaltedOutpointHasher{/*deterministic=*/m_deterministic}, CCoinsMap::key_equal{}, &m_cache_coins_memory_resource};
}
void CCoinsViewCache::SanityCheck() const
{
size_t recomputed_usage = 0;
size_t count_flagged = 0;
for (const auto& [_, entry] : cacheCoins) {
unsigned attr = 0;
if (entry.IsDirty()) attr |= 1;
if (entry.IsFresh()) attr |= 2;
if (entry.coin.IsSpent()) attr |= 4;
// Only 5 combinations are possible.
assert(attr != 2 && attr != 4 && attr != 7);
// Recompute cachedCoinsUsage.
recomputed_usage += entry.coin.DynamicMemoryUsage();
// Count the number of entries we expect in the linked list.
if (entry.IsDirty() || entry.IsFresh()) ++count_flagged;
}
// Iterate over the linked list of flagged entries.
size_t count_linked = 0;
for (auto it = m_sentinel.second.Next(); it != &m_sentinel; it = it->second.Next()) {
// Verify linked list integrity.
assert(it->second.Next()->second.Prev() == it);
assert(it->second.Prev()->second.Next() == it);
// Verify they are actually flagged.
assert(it->second.IsDirty() || it->second.IsFresh());
// Count the number of entries actually in the list.
++count_linked;
}
assert(count_linked == count_flagged);
assert(recomputed_usage == cachedCoinsUsage);
}
static const size_t MIN_TRANSACTION_OUTPUT_WEIGHT = WITNESS_SCALE_FACTOR * ::GetSerializeSize(CTxOut());
static const size_t MAX_OUTPUTS_PER_BLOCK = MAX_BLOCK_WEIGHT / MIN_TRANSACTION_OUTPUT_WEIGHT;
const Coin& AccessByTxid(const CCoinsViewCache& view, const Txid& txid)
{
COutPoint iter(txid, 0);
while (iter.n < MAX_OUTPUTS_PER_BLOCK) {
const Coin& alternate = view.AccessCoin(iter);
if (!alternate.IsSpent()) return alternate;
++iter.n;
}
return coinEmpty;
}
template <typename ReturnType, typename Func>
static ReturnType ExecuteBackedWrapper(Func func, const std::vector<std::function<void()>>& err_callbacks)
{
try {
return func();
} catch(const std::runtime_error& e) {
for (const auto& f : err_callbacks) {
f();
}
LogError("Error reading from database: %s\n", e.what());
// Starting the shutdown sequence and returning false to the caller would be
// interpreted as 'entry not found' (as opposed to unable to read data), and
// could lead to invalid interpretation. Just exit immediately, as we can't
// continue anyway, and all writes should be atomic.
std::abort();
}
}
std::optional<Coin> CCoinsViewErrorCatcher::GetCoin(const COutPoint& outpoint) const
{
return ExecuteBackedWrapper<std::optional<Coin>>([&]() { return CCoinsViewBacked::GetCoin(outpoint); }, m_err_callbacks);
}
bool CCoinsViewErrorCatcher::HaveCoin(const COutPoint& outpoint) const
{
return ExecuteBackedWrapper<bool>([&]() { return CCoinsViewBacked::HaveCoin(outpoint); }, m_err_callbacks);
}