bitcoin/src/main.cpp
Wladimir J. van der Laan 62e21fb5d0 Show warning when using prerelease version
Implements #1948

- Add macro `CLIENT_VERSION_IS_RELEASE` to clientversion.h
- When running a prerelease (the above macro is `false`):
  - In UI, show an orange warning bar at the top. This will be used for other
    warnings (and alerts) as well, instead of the status bar.
  - For `bitcoind`, show the warning in the "errors" field in `getinfo`
    response.
2012-10-25 07:33:45 +02:00

4359 lines
145 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "alert.h"
#include "checkpoints.h"
#include "db.h"
#include "txdb.h"
#include "net.h"
#include "init.h"
#include "ui_interface.h"
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
using namespace std;
using namespace boost;
//
// Global state
//
CCriticalSection cs_setpwalletRegistered;
set<CWallet*> setpwalletRegistered;
CCriticalSection cs_main;
CTxMemPool mempool;
unsigned int nTransactionsUpdated = 0;
map<uint256, CBlockIndex*> mapBlockIndex;
uint256 hashGenesisBlock("0x000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f");
static CBigNum bnProofOfWorkLimit(~uint256(0) >> 32);
CBlockIndex* pindexGenesisBlock = NULL;
int nBestHeight = -1;
CBigNum bnBestChainWork = 0;
CBigNum bnBestInvalidWork = 0;
uint256 hashBestChain = 0;
CBlockIndex* pindexBest = NULL;
set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexValid; // may contain all CBlockIndex*'s that have validness >=BLOCK_VALID_TRANSACTIONS, and must contain those who aren't failed
int64 nTimeBestReceived = 0;
bool fImporting = false;
CMedianFilter<int> cPeerBlockCounts(5, 0); // Amount of blocks that other nodes claim to have
map<uint256, CBlock*> mapOrphanBlocks;
multimap<uint256, CBlock*> mapOrphanBlocksByPrev;
map<uint256, CDataStream*> mapOrphanTransactions;
map<uint256, map<uint256, CDataStream*> > mapOrphanTransactionsByPrev;
// Constant stuff for coinbase transactions we create:
CScript COINBASE_FLAGS;
const string strMessageMagic = "Bitcoin Signed Message:\n";
double dHashesPerSec;
int64 nHPSTimerStart;
// Settings
int64 nTransactionFee = 0;
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
void RegisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.insert(pwalletIn);
}
}
void UnregisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.erase(pwalletIn);
}
}
// check whether the passed transaction is from us
bool static IsFromMe(CTransaction& tx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->IsFromMe(tx))
return true;
return false;
}
// get the wallet transaction with the given hash (if it exists)
bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->GetTransaction(hashTx,wtx))
return true;
return false;
}
// erases transaction with the given hash from all wallets
void static EraseFromWallets(uint256 hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->EraseFromWallet(hash);
}
// make sure all wallets know about the given transaction, in the given block
void SyncWithWallets(const uint256 &hash, const CTransaction& tx, const CBlock* pblock, bool fUpdate)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->AddToWalletIfInvolvingMe(hash, tx, pblock, fUpdate);
}
// notify wallets about a new best chain
void static SetBestChain(const CBlockLocator& loc)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->SetBestChain(loc);
}
// notify wallets about an updated transaction
void static UpdatedTransaction(const uint256& hashTx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->UpdatedTransaction(hashTx);
}
// dump all wallets
void static PrintWallets(const CBlock& block)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->PrintWallet(block);
}
// notify wallets about an incoming inventory (for request counts)
void static Inventory(const uint256& hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->Inventory(hash);
}
// ask wallets to resend their transactions
void static ResendWalletTransactions()
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->ResendWalletTransactions();
}
//////////////////////////////////////////////////////////////////////////////
//
// CCoinsView implementations
//
bool CCoinsView::GetCoins(uint256 txid, CCoins &coins) { return false; }
bool CCoinsView::SetCoins(uint256 txid, const CCoins &coins) { return false; }
bool CCoinsView::HaveCoins(uint256 txid) { return false; }
CBlockIndex *CCoinsView::GetBestBlock() { return NULL; }
bool CCoinsView::SetBestBlock(CBlockIndex *pindex) { return false; }
bool CCoinsView::BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex) { return false; }
bool CCoinsView::GetStats(CCoinsStats &stats) { return false; }
CCoinsViewBacked::CCoinsViewBacked(CCoinsView &viewIn) : base(&viewIn) { }
bool CCoinsViewBacked::GetCoins(uint256 txid, CCoins &coins) { return base->GetCoins(txid, coins); }
bool CCoinsViewBacked::SetCoins(uint256 txid, const CCoins &coins) { return base->SetCoins(txid, coins); }
bool CCoinsViewBacked::HaveCoins(uint256 txid) { return base->HaveCoins(txid); }
CBlockIndex *CCoinsViewBacked::GetBestBlock() { return base->GetBestBlock(); }
bool CCoinsViewBacked::SetBestBlock(CBlockIndex *pindex) { return base->SetBestBlock(pindex); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex) { return base->BatchWrite(mapCoins, pindex); }
bool CCoinsViewBacked::GetStats(CCoinsStats &stats) { return base->GetStats(stats); }
CCoinsViewCache::CCoinsViewCache(CCoinsView &baseIn, bool fDummy) : CCoinsViewBacked(baseIn), pindexTip(NULL) { }
bool CCoinsViewCache::GetCoins(uint256 txid, CCoins &coins) {
if (cacheCoins.count(txid)) {
coins = cacheCoins[txid];
return true;
}
if (base->GetCoins(txid, coins)) {
cacheCoins[txid] = coins;
return true;
}
return false;
}
std::map<uint256,CCoins>::iterator CCoinsViewCache::FetchCoins(uint256 txid) {
std::map<uint256,CCoins>::iterator it = cacheCoins.find(txid);
if (it != cacheCoins.end())
return it;
CCoins tmp;
if (!base->GetCoins(txid,tmp))
return it;
std::pair<std::map<uint256,CCoins>::iterator,bool> ret = cacheCoins.insert(std::make_pair(txid, tmp));
return ret.first;
}
CCoins &CCoinsViewCache::GetCoins(uint256 txid) {
std::map<uint256,CCoins>::iterator it = FetchCoins(txid);
assert(it != cacheCoins.end());
return it->second;
}
bool CCoinsViewCache::SetCoins(uint256 txid, const CCoins &coins) {
cacheCoins[txid] = coins;
return true;
}
bool CCoinsViewCache::HaveCoins(uint256 txid) {
return FetchCoins(txid) != cacheCoins.end();
}
CBlockIndex *CCoinsViewCache::GetBestBlock() {
if (pindexTip == NULL)
pindexTip = base->GetBestBlock();
return pindexTip;
}
bool CCoinsViewCache::SetBestBlock(CBlockIndex *pindex) {
pindexTip = pindex;
return true;
}
bool CCoinsViewCache::BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex) {
for (std::map<uint256, CCoins>::const_iterator it = mapCoins.begin(); it != mapCoins.end(); it++)
cacheCoins[it->first] = it->second;
pindexTip = pindex;
return true;
}
bool CCoinsViewCache::Flush() {
bool fOk = base->BatchWrite(cacheCoins, pindexTip);
if (fOk)
cacheCoins.clear();
return fOk;
}
unsigned int CCoinsViewCache::GetCacheSize() {
return cacheCoins.size();
}
/** CCoinsView that brings transactions from a memorypool into view.
It does not check for spendings by memory pool transactions. */
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView &baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
bool CCoinsViewMemPool::GetCoins(uint256 txid, CCoins &coins) {
if (base->GetCoins(txid, coins))
return true;
if (mempool.exists(txid)) {
const CTransaction &tx = mempool.lookup(txid);
coins = CCoins(tx, MEMPOOL_HEIGHT);
return true;
}
return false;
}
bool CCoinsViewMemPool::HaveCoins(uint256 txid) {
return mempool.exists(txid) || base->HaveCoins(txid);
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CDataStream& vMsg)
{
CTransaction tx;
CDataStream(vMsg) >> tx;
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
CDataStream* pvMsg = new CDataStream(vMsg);
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
if (pvMsg->size() > 5000)
{
printf("ignoring large orphan tx (size: %"PRIszu", hash: %s)\n", pvMsg->size(), hash.ToString().substr(0,10).c_str());
delete pvMsg;
return false;
}
mapOrphanTransactions[hash] = pvMsg;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(make_pair(hash, pvMsg));
printf("stored orphan tx %s (mapsz %"PRIszu")\n", hash.ToString().substr(0,10).c_str(),
mapOrphanTransactions.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
if (!mapOrphanTransactions.count(hash))
return;
const CDataStream* pvMsg = mapOrphanTransactions[hash];
CTransaction tx;
CDataStream(*pvMsg) >> tx;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
mapOrphanTransactionsByPrev[txin.prevout.hash].erase(hash);
if (mapOrphanTransactionsByPrev[txin.prevout.hash].empty())
mapOrphanTransactionsByPrev.erase(txin.prevout.hash);
}
delete pvMsg;
mapOrphanTransactions.erase(hash);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, CDataStream*>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
//////////////////////////////////////////////////////////////////////////////
//
// CTransaction
//
bool CTransaction::IsStandard() const
{
if (nVersion > CTransaction::CURRENT_VERSION)
return false;
BOOST_FOREACH(const CTxIn& txin, vin)
{
// Biggest 'standard' txin is a 3-signature 3-of-3 CHECKMULTISIG
// pay-to-script-hash, which is 3 ~80-byte signatures, 3
// ~65-byte public keys, plus a few script ops.
if (txin.scriptSig.size() > 500)
return false;
if (!txin.scriptSig.IsPushOnly())
return false;
}
BOOST_FOREACH(const CTxOut& txout, vout) {
if (!::IsStandard(txout.scriptPubKey))
return false;
if (txout.nValue == 0)
return false;
}
return true;
}
//
// Check transaction inputs, and make sure any
// pay-to-script-hash transactions are evaluating IsStandard scripts
//
// Why bother? To avoid denial-of-service attacks; an attacker
// can submit a standard HASH... OP_EQUAL transaction,
// which will get accepted into blocks. The redemption
// script can be anything; an attacker could use a very
// expensive-to-check-upon-redemption script like:
// DUP CHECKSIG DROP ... repeated 100 times... OP_1
//
bool CTransaction::AreInputsStandard(CCoinsViewCache& mapInputs) const
{
if (IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut& prev = GetOutputFor(vin[i], mapInputs);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig the
// IsStandard() call returns false
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, vin[i].scriptSig, *this, i, false, 0))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (!Solver(subscript, whichType2, vSolutions2))
return false;
if (whichType2 == TX_SCRIPTHASH)
return false;
int tmpExpected;
tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int
CTransaction::GetLegacySigOpCount() const
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
int CMerkleTx::SetMerkleBranch(const CBlock* pblock)
{
if (fClient)
{
if (hashBlock == 0)
return 0;
}
else
{
CBlock blockTmp;
if (pblock == NULL) {
CCoins coins;
if (pcoinsTip->GetCoins(GetHash(), coins)) {
CBlockIndex *pindex = FindBlockByHeight(coins.nHeight);
if (pindex) {
if (!blockTmp.ReadFromDisk(pindex))
return 0;
pblock = &blockTmp;
}
}
}
if (pblock) {
// Update the tx's hashBlock
hashBlock = pblock->GetHash();
// Locate the transaction
for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++)
if (pblock->vtx[nIndex] == *(CTransaction*)this)
break;
if (nIndex == (int)pblock->vtx.size())
{
vMerkleBranch.clear();
nIndex = -1;
printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n");
return 0;
}
// Fill in merkle branch
vMerkleBranch = pblock->GetMerkleBranch(nIndex);
}
}
// Is the tx in a block that's in the main chain
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return pindexBest->nHeight - pindex->nHeight + 1;
}
bool CTransaction::CheckTransaction() const
{
// Basic checks that don't depend on any context
if (vin.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vin empty"));
if (vout.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vout empty"));
// Size limits
if (::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CTransaction::CheckTransaction() : size limits failed"));
// Check for negative or overflow output values
int64 nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, vout)
{
if (txout.nValue < 0)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue negative"));
if (txout.nValue > MAX_MONEY)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue too high"));
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return DoS(100, error("CTransaction::CheckTransaction() : txout total out of range"));
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, vin)
{
if (vInOutPoints.count(txin.prevout))
return false;
vInOutPoints.insert(txin.prevout);
}
if (IsCoinBase())
{
if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100)
return DoS(100, error("CTransaction::CheckTransaction() : coinbase script size"));
}
else
{
BOOST_FOREACH(const CTxIn& txin, vin)
if (txin.prevout.IsNull())
return DoS(10, error("CTransaction::CheckTransaction() : prevout is null"));
}
return true;
}
int64 CTransaction::GetMinFee(unsigned int nBlockSize, bool fAllowFree,
enum GetMinFee_mode mode) const
{
// Base fee is either MIN_TX_FEE or MIN_RELAY_TX_FEE
int64 nBaseFee = (mode == GMF_RELAY) ? MIN_RELAY_TX_FEE : MIN_TX_FEE;
unsigned int nBytes = ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION);
unsigned int nNewBlockSize = nBlockSize + nBytes;
int64 nMinFee = (1 + (int64)nBytes / 1000) * nBaseFee;
if (fAllowFree)
{
if (nBlockSize == 1)
{
// Transactions under 10K are free
// (about 4500 BTC if made of 50 BTC inputs)
if (nBytes < 10000)
nMinFee = 0;
}
else
{
// Free transaction area
if (nNewBlockSize < 27000)
nMinFee = 0;
}
}
// To limit dust spam, require MIN_TX_FEE/MIN_RELAY_TX_FEE if any output is less than 0.01
if (nMinFee < nBaseFee)
{
BOOST_FOREACH(const CTxOut& txout, vout)
if (txout.nValue < CENT)
nMinFee = nBaseFee;
}
// Raise the price as the block approaches full
if (nBlockSize != 1 && nNewBlockSize >= MAX_BLOCK_SIZE_GEN/2)
{
if (nNewBlockSize >= MAX_BLOCK_SIZE_GEN)
return MAX_MONEY;
nMinFee *= MAX_BLOCK_SIZE_GEN / (MAX_BLOCK_SIZE_GEN - nNewBlockSize);
}
if (!MoneyRange(nMinFee))
nMinFee = MAX_MONEY;
return nMinFee;
}
void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins)
{
LOCK(cs);
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0));
// iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx
while (it != mapNextTx.end() && it->first.hash == hashTx) {
coins.Spend(it->first.n); // and remove those outputs from coins
it++;
}
}
bool CTxMemPool::accept(CTransaction &tx, bool fCheckInputs,
bool* pfMissingInputs)
{
if (pfMissingInputs)
*pfMissingInputs = false;
if (!tx.CheckTransaction())
return error("CTxMemPool::accept() : CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return tx.DoS(100, error("CTxMemPool::accept() : coinbase as individual tx"));
// To help v0.1.5 clients who would see it as a negative number
if ((int64)tx.nLockTime > std::numeric_limits<int>::max())
return error("CTxMemPool::accept() : not accepting nLockTime beyond 2038 yet");
// Rather not work on nonstandard transactions (unless -testnet)
if (!fTestNet && !tx.IsStandard())
return error("CTxMemPool::accept() : nonstandard transaction type");
// is it already in the memory pool?
uint256 hash = tx.GetHash();
{
LOCK(cs);
if (mapTx.count(hash))
return false;
}
// Check for conflicts with in-memory transactions
CTransaction* ptxOld = NULL;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
// Allow replacing with a newer version of the same transaction
if (i != 0)
return false;
ptxOld = mapNextTx[outpoint].ptx;
if (ptxOld->IsFinal())
return false;
if (!tx.IsNewerThan(*ptxOld))
return false;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld)
return false;
}
break;
}
}
if (fCheckInputs)
{
CCoinsView dummy;
CCoinsViewCache view(dummy);
{
LOCK(cs);
CCoinsViewMemPool viewMemPool(*pcoinsTip, *this);
view.SetBackend(viewMemPool);
// do we already have it?
if (view.HaveCoins(hash))
return false;
// do all inputs exist?
// Note that this does not check for the presence of actual outputs (see the next check for that),
// only helps filling in pfMissingInputs (to determine missing vs spent).
BOOST_FOREACH(const CTxIn txin, tx.vin) {
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
}
// are the actual inputs available?
if (!tx.HaveInputs(view))
return error("CTxMemPool::accept() : inputs already spent");
// Bring the best block into scope
view.GetBestBlock();
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view.SetBackend(dummy);
}
// Check for non-standard pay-to-script-hash in inputs
if (!tx.AreInputsStandard(view) && !fTestNet)
return error("CTxMemPool::accept() : nonstandard transaction input");
// Note: if you modify this code to accept non-standard transactions, then
// you should add code here to check that the transaction does a
// reasonable number of ECDSA signature verifications.
int64 nFees = tx.GetValueIn(view)-tx.GetValueOut();
unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
// Don't accept it if it can't get into a block
int64 txMinFee = tx.GetMinFee(1000, true, GMF_RELAY);
if (nFees < txMinFee)
return error("CTxMemPool::accept() : not enough fees %s, %"PRI64d" < %"PRI64d,
hash.ToString().c_str(),
nFees, txMinFee);
// Continuously rate-limit free transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (nFees < MIN_RELAY_TX_FEE)
{
static CCriticalSection cs;
static double dFreeCount;
static int64 nLastTime;
int64 nNow = GetTime();
{
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount > GetArg("-limitfreerelay", 15)*10*1000 && !IsFromMe(tx))
return error("CTxMemPool::accept() : free transaction rejected by rate limiter");
if (fDebug)
printf("Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
}
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!tx.CheckInputs(view, CS_ALWAYS, true, false))
{
return error("CTxMemPool::accept() : ConnectInputs failed %s", hash.ToString().substr(0,10).c_str());
}
}
// Store transaction in memory
{
LOCK(cs);
if (ptxOld)
{
printf("CTxMemPool::accept() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str());
remove(*ptxOld);
}
addUnchecked(hash, tx);
}
///// are we sure this is ok when loading transactions or restoring block txes
// If updated, erase old tx from wallet
if (ptxOld)
EraseFromWallets(ptxOld->GetHash());
printf("CTxMemPool::accept() : accepted %s (poolsz %"PRIszu")\n",
hash.ToString().substr(0,10).c_str(),
mapTx.size());
return true;
}
bool CTransaction::AcceptToMemoryPool(bool fCheckInputs, bool* pfMissingInputs)
{
return mempool.accept(*this, fCheckInputs, pfMissingInputs);
}
bool CTxMemPool::addUnchecked(const uint256& hash, CTransaction &tx)
{
// Add to memory pool without checking anything. Don't call this directly,
// call CTxMemPool::accept to properly check the transaction first.
{
mapTx[hash] = tx;
for (unsigned int i = 0; i < tx.vin.size(); i++)
mapNextTx[tx.vin[i].prevout] = CInPoint(&mapTx[hash], i);
nTransactionsUpdated++;
}
return true;
}
bool CTxMemPool::remove(CTransaction &tx)
{
// Remove transaction from memory pool
{
LOCK(cs);
uint256 hash = tx.GetHash();
if (mapTx.count(hash))
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapNextTx.erase(txin.prevout);
mapTx.erase(hash);
nTransactionsUpdated++;
}
}
return true;
}
void CTxMemPool::clear()
{
LOCK(cs);
mapTx.clear();
mapNextTx.clear();
++nTransactionsUpdated;
}
void CTxMemPool::queryHashes(std::vector<uint256>& vtxid)
{
vtxid.clear();
LOCK(cs);
vtxid.reserve(mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi)
vtxid.push_back((*mi).first);
}
int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const
{
if (hashBlock == 0 || nIndex == -1)
return 0;
// Find the block it claims to be in
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
// Make sure the merkle branch connects to this block
if (!fMerkleVerified)
{
if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot)
return 0;
fMerkleVerified = true;
}
pindexRet = pindex;
return pindexBest->nHeight - pindex->nHeight + 1;
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!IsCoinBase())
return 0;
return max(0, (COINBASE_MATURITY+20) - GetDepthInMainChain());
}
bool CMerkleTx::AcceptToMemoryPool(bool fCheckInputs)
{
if (fClient)
{
if (!IsInMainChain() && !ClientCheckInputs())
return false;
return CTransaction::AcceptToMemoryPool(false);
}
else
{
return CTransaction::AcceptToMemoryPool(fCheckInputs);
}
}
bool CWalletTx::AcceptWalletTransaction(bool fCheckInputs)
{
{
LOCK(mempool.cs);
// Add previous supporting transactions first
BOOST_FOREACH(CMerkleTx& tx, vtxPrev)
{
if (!tx.IsCoinBase())
{
uint256 hash = tx.GetHash();
if (!mempool.exists(hash) && pcoinsTip->HaveCoins(hash))
tx.AcceptToMemoryPool(fCheckInputs);
}
}
return AcceptToMemoryPool(fCheckInputs);
}
return false;
}
// Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock
bool GetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock, bool fAllowSlow)
{
CBlockIndex *pindexSlow = NULL;
{
LOCK(cs_main);
{
LOCK(mempool.cs);
if (mempool.exists(hash))
{
txOut = mempool.lookup(hash);
return true;
}
}
if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it
int nHeight = -1;
{
CCoinsViewCache &view = *pcoinsTip;
CCoins coins;
if (view.GetCoins(hash, coins))
nHeight = coins.nHeight;
}
if (nHeight > 0)
pindexSlow = FindBlockByHeight(nHeight);
}
}
if (pindexSlow) {
CBlock block;
if (block.ReadFromDisk(pindexSlow)) {
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
if (tx.GetHash() == hash) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
static CBlockIndex* pblockindexFBBHLast;
CBlockIndex* FindBlockByHeight(int nHeight)
{
CBlockIndex *pblockindex;
if (nHeight < nBestHeight / 2)
pblockindex = pindexGenesisBlock;
else
pblockindex = pindexBest;
if (pblockindexFBBHLast && abs(nHeight - pblockindex->nHeight) > abs(nHeight - pblockindexFBBHLast->nHeight))
pblockindex = pblockindexFBBHLast;
while (pblockindex->nHeight > nHeight)
pblockindex = pblockindex->pprev;
while (pblockindex->nHeight < nHeight)
pblockindex = pblockindex->pnext;
pblockindexFBBHLast = pblockindex;
return pblockindex;
}
bool CBlock::ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions)
{
if (!fReadTransactions)
{
*this = pindex->GetBlockHeader();
return true;
}
if (!ReadFromDisk(pindex->GetBlockPos(), fReadTransactions))
return false;
if (GetHash() != pindex->GetBlockHash())
return error("CBlock::ReadFromDisk() : GetHash() doesn't match index");
return true;
}
uint256 static GetOrphanRoot(const CBlock* pblock)
{
// Work back to the first block in the orphan chain
while (mapOrphanBlocks.count(pblock->hashPrevBlock))
pblock = mapOrphanBlocks[pblock->hashPrevBlock];
return pblock->GetHash();
}
int64 static GetBlockValue(int nHeight, int64 nFees)
{
int64 nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210000 blocks, which will occur approximately every 4 years
nSubsidy >>= (nHeight / 210000);
return nSubsidy + nFees;
}
static const int64 nTargetTimespan = 14 * 24 * 60 * 60; // two weeks
static const int64 nTargetSpacing = 10 * 60;
static const int64 nInterval = nTargetTimespan / nTargetSpacing;
//
// minimum amount of work that could possibly be required nTime after
// minimum work required was nBase
//
unsigned int ComputeMinWork(unsigned int nBase, int64 nTime)
{
// Testnet has min-difficulty blocks
// after nTargetSpacing*2 time between blocks:
if (fTestNet && nTime > nTargetSpacing*2)
return bnProofOfWorkLimit.GetCompact();
CBigNum bnResult;
bnResult.SetCompact(nBase);
while (nTime > 0 && bnResult < bnProofOfWorkLimit)
{
// Maximum 400% adjustment...
bnResult *= 4;
// ... in best-case exactly 4-times-normal target time
nTime -= nTargetTimespan*4;
}
if (bnResult > bnProofOfWorkLimit)
bnResult = bnProofOfWorkLimit;
return bnResult.GetCompact();
}
unsigned int static GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlock *pblock)
{
unsigned int nProofOfWorkLimit = bnProofOfWorkLimit.GetCompact();
// Genesis block
if (pindexLast == NULL)
return nProofOfWorkLimit;
// Only change once per interval
if ((pindexLast->nHeight+1) % nInterval != 0)
{
// Special difficulty rule for testnet:
if (fTestNet)
{
// If the new block's timestamp is more than 2* 10 minutes
// then allow mining of a min-difficulty block.
if (pblock->nTime > pindexLast->nTime + nTargetSpacing*2)
return nProofOfWorkLimit;
else
{
// Return the last non-special-min-difficulty-rules-block
const CBlockIndex* pindex = pindexLast;
while (pindex->pprev && pindex->nHeight % nInterval != 0 && pindex->nBits == nProofOfWorkLimit)
pindex = pindex->pprev;
return pindex->nBits;
}
}
return pindexLast->nBits;
}
// Go back by what we want to be 14 days worth of blocks
const CBlockIndex* pindexFirst = pindexLast;
for (int i = 0; pindexFirst && i < nInterval-1; i++)
pindexFirst = pindexFirst->pprev;
assert(pindexFirst);
// Limit adjustment step
int64 nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime();
printf(" nActualTimespan = %"PRI64d" before bounds\n", nActualTimespan);
if (nActualTimespan < nTargetTimespan/4)
nActualTimespan = nTargetTimespan/4;
if (nActualTimespan > nTargetTimespan*4)
nActualTimespan = nTargetTimespan*4;
// Retarget
CBigNum bnNew;
bnNew.SetCompact(pindexLast->nBits);
bnNew *= nActualTimespan;
bnNew /= nTargetTimespan;
if (bnNew > bnProofOfWorkLimit)
bnNew = bnProofOfWorkLimit;
/// debug print
printf("GetNextWorkRequired RETARGET\n");
printf("nTargetTimespan = %"PRI64d" nActualTimespan = %"PRI64d"\n", nTargetTimespan, nActualTimespan);
printf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString().c_str());
printf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str());
return bnNew.GetCompact();
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits)
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
// Check range
if (bnTarget <= 0 || bnTarget > bnProofOfWorkLimit)
return error("CheckProofOfWork() : nBits below minimum work");
// Check proof of work matches claimed amount
if (hash > bnTarget.getuint256())
return error("CheckProofOfWork() : hash doesn't match nBits");
return true;
}
// Return maximum amount of blocks that other nodes claim to have
int GetNumBlocksOfPeers()
{
return std::max(cPeerBlockCounts.median(), Checkpoints::GetTotalBlocksEstimate());
}
bool IsInitialBlockDownload()
{
if (pindexBest == NULL || nBestHeight < Checkpoints::GetTotalBlocksEstimate())
return true;
static int64 nLastUpdate;
static CBlockIndex* pindexLastBest;
if (pindexBest != pindexLastBest)
{
pindexLastBest = pindexBest;
nLastUpdate = GetTime();
}
return (GetTime() - nLastUpdate < 10 &&
pindexBest->GetBlockTime() < GetTime() - 24 * 60 * 60);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (pindexNew->bnChainWork > bnBestInvalidWork)
{
bnBestInvalidWork = pindexNew->bnChainWork;
pblocktree->WriteBestInvalidWork(bnBestInvalidWork);
uiInterface.NotifyBlocksChanged();
}
printf("InvalidChainFound: invalid block=%s height=%d work=%s date=%s\n",
pindexNew->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->nHeight,
pindexNew->bnChainWork.ToString().c_str(), DateTimeStrFormat("%x %H:%M:%S",
pindexNew->GetBlockTime()).c_str());
printf("InvalidChainFound: current best=%s height=%d work=%s date=%s\n",
hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str(),
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str());
if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6)
printf("InvalidChainFound: Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.\n");
}
void static InvalidBlockFound(CBlockIndex *pindex) {
pindex->nStatus |= BLOCK_FAILED_VALID;
pblocktree->WriteBlockIndex(CDiskBlockIndex(pindex));
setBlockIndexValid.erase(pindex);
InvalidChainFound(pindex);
if (pindex->pnext)
ConnectBestBlock(); // reorganise away from the failed block
}
bool ConnectBestBlock() {
do {
CBlockIndex *pindexNewBest;
{
std::set<CBlockIndex*,CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexValid.rbegin();
if (it == setBlockIndexValid.rend())
return true;
pindexNewBest = *it;
}
if (pindexNewBest == pindexBest)
return true; // nothing to do
// check ancestry
CBlockIndex *pindexTest = pindexNewBest;
std::vector<CBlockIndex*> vAttach;
do {
if (pindexTest->nStatus & BLOCK_FAILED_MASK) {
// mark descendants failed
CBlockIndex *pindexFailed = pindexNewBest;
while (pindexTest != pindexFailed) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
setBlockIndexValid.erase(pindexFailed);
pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexFailed));
pindexFailed = pindexFailed->pprev;
}
InvalidChainFound(pindexNewBest);
break;
}
if (pindexBest == NULL || pindexTest->bnChainWork > pindexBest->bnChainWork)
vAttach.push_back(pindexTest);
if (pindexTest->pprev == NULL || pindexTest->pnext != NULL) {
reverse(vAttach.begin(), vAttach.end());
BOOST_FOREACH(CBlockIndex *pindexSwitch, vAttach)
if (!SetBestChain(pindexSwitch))
return false;
return true;
}
pindexTest = pindexTest->pprev;
} while(true);
} while(true);
}
void CBlock::UpdateTime(const CBlockIndex* pindexPrev)
{
nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());
// Updating time can change work required on testnet:
if (fTestNet)
nBits = GetNextWorkRequired(pindexPrev, this);
}
const CTxOut &CTransaction::GetOutputFor(const CTxIn& input, CCoinsViewCache& view)
{
const CCoins &coins = view.GetCoins(input.prevout.hash);
assert(coins.IsAvailable(input.prevout.n));
return coins.vout[input.prevout.n];
}
int64 CTransaction::GetValueIn(CCoinsViewCache& inputs) const
{
if (IsCoinBase())
return 0;
int64 nResult = 0;
for (unsigned int i = 0; i < vin.size(); i++)
nResult += GetOutputFor(vin[i], inputs).nValue;
return nResult;
}
unsigned int CTransaction::GetP2SHSigOpCount(CCoinsViewCache& inputs) const
{
if (IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut &prevout = GetOutputFor(vin[i], inputs);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(vin[i].scriptSig);
}
return nSigOps;
}
bool CTransaction::UpdateCoins(CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight, const uint256 &txhash) const
{
// mark inputs spent
if (!IsCoinBase()) {
BOOST_FOREACH(const CTxIn &txin, vin) {
CCoins &coins = inputs.GetCoins(txin.prevout.hash);
CTxInUndo undo;
if (!coins.Spend(txin.prevout, undo))
return error("UpdateCoins() : cannot spend input");
txundo.vprevout.push_back(undo);
}
}
// add outputs
if (!inputs.SetCoins(txhash, CCoins(*this, nHeight)))
return error("UpdateCoins() : cannot update output");
return true;
}
bool CTransaction::HaveInputs(CCoinsViewCache &inputs) const
{
if (!IsCoinBase()) {
// first check whether information about the prevout hash is available
for (unsigned int i = 0; i < vin.size(); i++) {
const COutPoint &prevout = vin[i].prevout;
if (!inputs.HaveCoins(prevout.hash))
return false;
}
// then check whether the actual outputs are available
for (unsigned int i = 0; i < vin.size(); i++) {
const COutPoint &prevout = vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
if (!coins.IsAvailable(prevout.n))
return false;
}
}
return true;
}
bool CTransaction::CheckInputs(CCoinsViewCache &inputs, enum CheckSig_mode csmode, bool fStrictPayToScriptHash, bool fStrictEncodings) const
{
if (!IsCoinBase())
{
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!HaveInputs(inputs))
return error("CheckInputs() : %s inputs unavailable", GetHash().ToString().substr(0,10).c_str());
// While checking, GetBestBlock() refers to the parent block.
// This is also true for mempool checks.
int nSpendHeight = inputs.GetBestBlock()->nHeight + 1;
int64 nValueIn = 0;
int64 nFees = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
const COutPoint &prevout = vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
// If prev is coinbase, check that it's matured
if (coins.IsCoinBase()) {
if (nSpendHeight - coins.nHeight < COINBASE_MATURITY)
return error("CheckInputs() : tried to spend coinbase at depth %d", nSpendHeight - coins.nHeight);
}
// Check for negative or overflow input values
nValueIn += coins.vout[prevout.n].nValue;
if (!MoneyRange(coins.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return DoS(100, error("CheckInputs() : txin values out of range"));
}
if (nValueIn < GetValueOut())
return DoS(100, error("ChecktInputs() : %s value in < value out", GetHash().ToString().substr(0,10).c_str()));
// Tally transaction fees
int64 nTxFee = nValueIn - GetValueOut();
if (nTxFee < 0)
return DoS(100, error("CheckInputs() : %s nTxFee < 0", GetHash().ToString().substr(0,10).c_str()));
nFees += nTxFee;
if (!MoneyRange(nFees))
return DoS(100, error("CheckInputs() : nFees out of range"));
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
// Skip ECDSA signature verification when connecting blocks
// before the last block chain checkpoint. This is safe because block merkle hashes are
// still computed and checked, and any change will be caught at the next checkpoint.
if (csmode == CS_ALWAYS ||
(csmode == CS_AFTER_CHECKPOINT && inputs.GetBestBlock()->nHeight >= Checkpoints::GetTotalBlocksEstimate())) {
for (unsigned int i = 0; i < vin.size(); i++) {
const COutPoint &prevout = vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
// Verify signature
if (!VerifySignature(coins, *this, i, fStrictPayToScriptHash, fStrictEncodings, 0)) {
// only during transition phase for P2SH: do not invoke anti-DoS code for
// potentially old clients relaying bad P2SH transactions
if (fStrictPayToScriptHash && VerifySignature(coins, *this, i, false, fStrictEncodings, 0))
return error("CheckInputs() : %s P2SH VerifySignature failed", GetHash().ToString().substr(0,10).c_str());
return DoS(100,error("CheckInputs() : %s VerifySignature failed", GetHash().ToString().substr(0,10).c_str()));
}
}
}
}
return true;
}
bool CTransaction::ClientCheckInputs() const
{
if (IsCoinBase())
return false;
// Take over previous transactions' spent pointers
{
LOCK(mempool.cs);
int64 nValueIn = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
// Get prev tx from single transactions in memory
COutPoint prevout = vin[i].prevout;
if (!mempool.exists(prevout.hash))
return false;
CTransaction& txPrev = mempool.lookup(prevout.hash);
if (prevout.n >= txPrev.vout.size())
return false;
// Verify signature
if (!VerifySignature(CCoins(txPrev, -1), *this, i, true, false, 0))
return error("ConnectInputs() : VerifySignature failed");
///// this is redundant with the mempool.mapNextTx stuff,
///// not sure which I want to get rid of
///// this has to go away now that posNext is gone
// // Check for conflicts
// if (!txPrev.vout[prevout.n].posNext.IsNull())
// return error("ConnectInputs() : prev tx already used");
//
// // Flag outpoints as used
// txPrev.vout[prevout.n].posNext = posThisTx;
nValueIn += txPrev.vout[prevout.n].nValue;
if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return error("ClientConnectInputs() : txin values out of range");
}
if (GetValueOut() > nValueIn)
return false;
}
return true;
}
bool CBlock::DisconnectBlock(CBlockIndex *pindex, CCoinsViewCache &view)
{
assert(pindex == view.GetBestBlock());
CBlockUndo blockUndo;
{
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull())
return error("DisconnectBlock() : no undo data available");
FILE *file = OpenUndoFile(pos, true);
if (file == NULL)
return error("DisconnectBlock() : undo file not available");
CAutoFile fileUndo(file, SER_DISK, CLIENT_VERSION);
fileUndo >> blockUndo;
}
assert(blockUndo.vtxundo.size() + 1 == vtx.size());
// undo transactions in reverse order
for (int i = vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = vtx[i];
uint256 hash = tx.GetHash();
// check that all outputs are available
if (!view.HaveCoins(hash))
return error("DisconnectBlock() : outputs still spent? database corrupted");
CCoins &outs = view.GetCoins(hash);
CCoins outsBlock = CCoins(tx, pindex->nHeight);
if (outs != outsBlock)
return error("DisconnectBlock() : added transaction mismatch? database corrupted");
// remove outputs
outs = CCoins();
// restore inputs
if (i > 0) { // not coinbases
const CTxUndo &txundo = blockUndo.vtxundo[i-1];
assert(txundo.vprevout.size() == tx.vin.size());
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
const CTxInUndo &undo = txundo.vprevout[j];
CCoins coins;
view.GetCoins(out.hash, coins); // this can fail if the prevout was already entirely spent
if (coins.IsPruned()) {
if (undo.nHeight == 0)
return error("DisconnectBlock() : undo data doesn't contain tx metadata? database corrupted");
coins.fCoinBase = undo.fCoinBase;
coins.nHeight = undo.nHeight;
coins.nVersion = undo.nVersion;
} else {
if (undo.nHeight != 0)
return error("DisconnectBlock() : undo data contains unneeded tx metadata? database corrupted");
}
if (coins.IsAvailable(out.n))
return error("DisconnectBlock() : prevout output not spent? database corrupted");
if (coins.vout.size() < out.n+1)
coins.vout.resize(out.n+1);
coins.vout[out.n] = undo.txout;
if (!view.SetCoins(out.hash, coins))
return error("DisconnectBlock() : cannot restore coin inputs");
}
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev);
return true;
}
void static FlushBlockFile()
{
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld;
posOld.nFile = nLastBlockFile;
posOld.nPos = 0;
FILE *fileOld = OpenBlockFile(posOld);
FileCommit(fileOld);
fclose(fileOld);
fileOld = OpenUndoFile(posOld);
FileCommit(fileOld);
fclose(fileOld);
}
bool FindUndoPos(int nFile, CDiskBlockPos &pos, unsigned int nAddSize);
bool CBlock::ConnectBlock(CBlockIndex* pindex, CCoinsViewCache &view, bool fJustCheck)
{
// Check it again in case a previous version let a bad block in
if (!CheckBlock(!fJustCheck, !fJustCheck))
return false;
// verify that the view's current state corresponds to the previous block
assert(pindex->pprev == view.GetBestBlock());
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
// two in the chain that violate it. This prevents exploiting the issue against nodes in their
// initial block download.
bool fEnforceBIP30 = !((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight==91880 && pindex->GetBlockHash() == uint256("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")));
if (fEnforceBIP30) {
for (unsigned int i=0; i<vtx.size(); i++) {
uint256 hash = GetTxHash(i);
if (view.HaveCoins(hash) && !view.GetCoins(hash).IsPruned())
return error("ConnectBlock() : tried to overwrite transaction");
}
}
// BIP16 didn't become active until Apr 1 2012
int64 nBIP16SwitchTime = 1333238400;
bool fStrictPayToScriptHash = (pindex->nTime >= nBIP16SwitchTime);
CBlockUndo blockundo;
int64 nFees = 0;
unsigned int nSigOps = 0;
for (unsigned int i=0; i<vtx.size(); i++)
{
const CTransaction &tx = vtx[i];
nSigOps += tx.GetLegacySigOpCount();
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
if (!tx.IsCoinBase())
{
if (!tx.HaveInputs(view))
return DoS(100, error("ConnectBlock() : inputs missing/spent"));
if (fStrictPayToScriptHash)
{
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += tx.GetP2SHSigOpCount(view);
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
}
nFees += tx.GetValueIn(view)-tx.GetValueOut();
if (!tx.CheckInputs(view, CS_AFTER_CHECKPOINT, fStrictPayToScriptHash, false))
return false;
}
CTxUndo txundo;
if (!tx.UpdateCoins(view, txundo, pindex->nHeight, GetTxHash(i)))
return error("ConnectBlock() : UpdateInputs failed");
if (!tx.IsCoinBase())
blockundo.vtxundo.push_back(txundo);
}
if (vtx[0].GetValueOut() > GetBlockValue(pindex->nHeight, nFees))
return false;
if (fJustCheck)
return true;
// Write undo information to disk
if (pindex->GetUndoPos().IsNull() || (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS)
{
if (pindex->GetUndoPos().IsNull()) {
CDiskBlockPos pos;
if (!FindUndoPos(pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 8))
return error("ConnectBlock() : FindUndoPos failed");
if (!blockundo.WriteToDisk(pos))
return error("ConnectBlock() : CBlockUndo::WriteToDisk failed");
// update nUndoPos in block index
pindex->nUndoPos = pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
}
pindex->nStatus = (pindex->nStatus & ~BLOCK_VALID_MASK) | BLOCK_VALID_SCRIPTS;
CDiskBlockIndex blockindex(pindex);
if (!pblocktree->WriteBlockIndex(blockindex))
return error("ConnectBlock() : WriteBlockIndex failed");
}
// add this block to the view's block chain
if (!view.SetBestBlock(pindex))
return false;
// Watch for transactions paying to me
for (unsigned int i=0; i<vtx.size(); i++)
SyncWithWallets(GetTxHash(i), vtx[i], this, true);
return true;
}
bool SetBestChain(CBlockIndex* pindexNew)
{
CCoinsViewCache &view = *pcoinsTip;
// special case for attaching the genesis block
// note that no ConnectBlock is called, so its coinbase output is non-spendable
if (pindexGenesisBlock == NULL && pindexNew->GetBlockHash() == hashGenesisBlock)
{
view.SetBestBlock(pindexNew);
if (!view.Flush())
return false;
pindexGenesisBlock = pindexNew;
pindexBest = pindexNew;
hashBestChain = pindexNew->GetBlockHash();
nBestHeight = pindexBest->nHeight;
bnBestChainWork = pindexNew->bnChainWork;
return true;
}
// Find the fork (typically, there is none)
CBlockIndex* pfork = view.GetBestBlock();
CBlockIndex* plonger = pindexNew;
while (pfork != plonger)
{
while (plonger->nHeight > pfork->nHeight)
if (!(plonger = plonger->pprev))
return error("SetBestChain() : plonger->pprev is null");
if (pfork == plonger)
break;
if (!(pfork = pfork->pprev))
return error("SetBestChain() : pfork->pprev is null");
}
// List of what to disconnect (typically nothing)
vector<CBlockIndex*> vDisconnect;
for (CBlockIndex* pindex = view.GetBestBlock(); pindex != pfork; pindex = pindex->pprev)
vDisconnect.push_back(pindex);
// List of what to connect (typically only pindexNew)
vector<CBlockIndex*> vConnect;
for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev)
vConnect.push_back(pindex);
reverse(vConnect.begin(), vConnect.end());
if (vDisconnect.size() > 0) {
printf("REORGANIZE: Disconnect %"PRIszu" blocks; %s..%s\n", vDisconnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexBest->GetBlockHash().ToString().substr(0,20).c_str());
printf("REORGANIZE: Connect %"PRIszu" blocks; %s..%s\n", vConnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->GetBlockHash().ToString().substr(0,20).c_str());
}
// Disconnect shorter branch
vector<CTransaction> vResurrect;
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) {
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("SetBestBlock() : ReadFromDisk for disconnect failed");
CCoinsViewCache viewTemp(view, true);
if (!block.DisconnectBlock(pindex, viewTemp))
return error("SetBestBlock() : DisconnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str());
if (!viewTemp.Flush())
return error("SetBestBlock() : Cache flush failed after disconnect");
// Queue memory transactions to resurrect
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!tx.IsCoinBase())
vResurrect.push_back(tx);
}
// Connect longer branch
vector<CTransaction> vDelete;
BOOST_FOREACH(CBlockIndex *pindex, vConnect) {
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("SetBestBlock() : ReadFromDisk for connect failed");
CCoinsViewCache viewTemp(view, true);
if (!block.ConnectBlock(pindex, viewTemp)) {
InvalidChainFound(pindexNew);
InvalidBlockFound(pindex);
return error("SetBestBlock() : ConnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str());
}
if (!viewTemp.Flush())
return error("SetBestBlock() : Cache flush failed after connect");
// Queue memory transactions to delete
BOOST_FOREACH(const CTransaction& tx, block.vtx)
vDelete.push_back(tx);
}
// Make sure it's successfully written to disk before changing memory structure
bool fIsInitialDownload = IsInitialBlockDownload();
if (!fIsInitialDownload || view.GetCacheSize()>5000) {
FlushBlockFile();
pblocktree->Sync();
if (!view.Flush())
return false;
}
// At this point, all changes have been done to the database.
// Proceed by updating the memory structures.
// Disconnect shorter branch
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
if (pindex->pprev)
pindex->pprev->pnext = NULL;
// Connect longer branch
BOOST_FOREACH(CBlockIndex* pindex, vConnect)
if (pindex->pprev)
pindex->pprev->pnext = pindex;
// Resurrect memory transactions that were in the disconnected branch
BOOST_FOREACH(CTransaction& tx, vResurrect)
tx.AcceptToMemoryPool(false);
// Delete redundant memory transactions that are in the connected branch
BOOST_FOREACH(CTransaction& tx, vDelete)
mempool.remove(tx);
// Update best block in wallet (so we can detect restored wallets)
if (!fIsInitialDownload)
{
const CBlockLocator locator(pindexNew);
::SetBestChain(locator);
}
// New best block
hashBestChain = pindexNew->GetBlockHash();
pindexBest = pindexNew;
pblockindexFBBHLast = NULL;
nBestHeight = pindexBest->nHeight;
bnBestChainWork = pindexNew->bnChainWork;
nTimeBestReceived = GetTime();
nTransactionsUpdated++;
printf("SetBestChain: new best=%s height=%d work=%s tx=%lu date=%s\n",
hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str(), (unsigned long)pindexNew->nChainTx,
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str());
// Check the version of the last 100 blocks to see if we need to upgrade:
if (!fIsInitialDownload)
{
int nUpgraded = 0;
const CBlockIndex* pindex = pindexBest;
for (int i = 0; i < 100 && pindex != NULL; i++)
{
if (pindex->nVersion > CBlock::CURRENT_VERSION)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
printf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, CBlock::CURRENT_VERSION);
if (nUpgraded > 100/2)
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: This version is obsolete, upgrade required!");
}
std::string strCmd = GetArg("-blocknotify", "");
if (!fIsInitialDownload && !strCmd.empty())
{
boost::replace_all(strCmd, "%s", hashBestChain.GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
return true;
}
bool CBlock::AddToBlockIndex(const CDiskBlockPos &pos)
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AddToBlockIndex() : %s already exists", hash.ToString().substr(0,20).c_str());
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(*this);
if (!pindexNew)
return error("AddToBlockIndex() : new CBlockIndex failed");
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
map<uint256, CBlockIndex*>::iterator miPrev = mapBlockIndex.find(hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
}
pindexNew->nTx = vtx.size();
pindexNew->bnChainWork = (pindexNew->pprev ? pindexNew->pprev->bnChainWork : 0) + pindexNew->GetBlockWork();
pindexNew->nChainTx = (pindexNew->pprev ? pindexNew->pprev->nChainTx : 0) + pindexNew->nTx;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus = BLOCK_VALID_TRANSACTIONS | BLOCK_HAVE_DATA;
setBlockIndexValid.insert(pindexNew);
pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexNew));
// New best?
if (!ConnectBestBlock())
return false;
if (pindexNew == pindexBest)
{
// Notify UI to display prev block's coinbase if it was ours
static uint256 hashPrevBestCoinBase;
UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = GetTxHash(0);
}
pblocktree->Flush();
uiInterface.NotifyBlocksChanged();
return true;
}
bool FindBlockPos(CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64 nTime)
{
bool fUpdatedLast = false;
LOCK(cs_LastBlockFile);
while (infoLastBlockFile.nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
printf("Leaving block file %i: %s\n", nLastBlockFile, infoLastBlockFile.ToString().c_str());
FlushBlockFile();
nLastBlockFile++;
infoLastBlockFile.SetNull();
pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile); // check whether data for the new file somehow already exist; can fail just fine
fUpdatedLast = true;
}
pos.nFile = nLastBlockFile;
pos.nPos = infoLastBlockFile.nSize;
infoLastBlockFile.nSize += nAddSize;
infoLastBlockFile.AddBlock(nHeight, nTime);
unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks = (infoLastBlockFile.nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
FILE *file = OpenBlockFile(pos);
if (file) {
printf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos);
}
fclose(file);
}
if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile))
return error("FindBlockPos() : cannot write updated block info");
if (fUpdatedLast)
pblocktree->WriteLastBlockFile(nLastBlockFile);
return true;
}
bool FindUndoPos(int nFile, CDiskBlockPos &pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
if (nFile == nLastBlockFile) {
pos.nPos = infoLastBlockFile.nUndoSize;
nNewSize = (infoLastBlockFile.nUndoSize += nAddSize);
if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile))
return error("FindUndoPos() : cannot write updated block info");
} else {
CBlockFileInfo info;
if (!pblocktree->ReadBlockFileInfo(nFile, info))
return error("FindUndoPos() : cannot read block info");
pos.nPos = info.nUndoSize;
nNewSize = (info.nUndoSize += nAddSize);
if (!pblocktree->WriteBlockFileInfo(nFile, info))
return error("FindUndoPos() : cannot write updated block info");
}
unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
FILE *file = OpenUndoFile(pos);
if (file) {
printf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
}
fclose(file);
}
return true;
}
bool CBlock::CheckBlock(bool fCheckPOW, bool fCheckMerkleRoot) const
{
// These are checks that are independent of context
// that can be verified before saving an orphan block.
// Size limits
if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CheckBlock() : size limits failed"));
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(GetHash(), nBits))
return DoS(50, error("CheckBlock() : proof of work failed"));
// Check timestamp
if (GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60)
return error("CheckBlock() : block timestamp too far in the future");
// First transaction must be coinbase, the rest must not be
if (vtx.empty() || !vtx[0].IsCoinBase())
return DoS(100, error("CheckBlock() : first tx is not coinbase"));
for (unsigned int i = 1; i < vtx.size(); i++)
if (vtx[i].IsCoinBase())
return DoS(100, error("CheckBlock() : more than one coinbase"));
// Check transactions
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!tx.CheckTransaction())
return DoS(tx.nDoS, error("CheckBlock() : CheckTransaction failed"));
// Build the merkle tree already. We need it anyway later, and it makes the
// block cache the transaction hashes, which means they don't need to be
// recalculated many times during this block's validation.
BuildMerkleTree();
// Check for duplicate txids. This is caught by ConnectInputs(),
// but catching it earlier avoids a potential DoS attack:
set<uint256> uniqueTx;
for (unsigned int i=0; i<vtx.size(); i++) {
uniqueTx.insert(GetTxHash(i));
}
if (uniqueTx.size() != vtx.size())
return DoS(100, error("CheckBlock() : duplicate transaction"));
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
nSigOps += tx.GetLegacySigOpCount();
}
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"));
// Check merkle root
if (fCheckMerkleRoot && hashMerkleRoot != BuildMerkleTree())
return DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"));
return true;
}
bool CBlock::AcceptBlock()
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AcceptBlock() : block already in mapBlockIndex");
// Get prev block index
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashPrevBlock);
if (mi == mapBlockIndex.end())
return DoS(10, error("AcceptBlock() : prev block not found"));
CBlockIndex* pindexPrev = (*mi).second;
int nHeight = pindexPrev->nHeight+1;
// Check proof of work
if (nBits != GetNextWorkRequired(pindexPrev, this))
return DoS(100, error("AcceptBlock() : incorrect proof of work"));
// Check timestamp against prev
if (GetBlockTime() <= pindexPrev->GetMedianTimePast())
return error("AcceptBlock() : block's timestamp is too early");
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!tx.IsFinal(nHeight, GetBlockTime()))
return DoS(10, error("AcceptBlock() : contains a non-final transaction"));
// Check that the block chain matches the known block chain up to a checkpoint
if (!Checkpoints::CheckBlock(nHeight, hash))
return DoS(100, error("AcceptBlock() : rejected by checkpoint lock-in at %d", nHeight));
// Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded:
if (nVersion < 2)
{
if ((!fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 950, 1000)) ||
(fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 75, 100)))
{
return error("AcceptBlock() : rejected nVersion=1 block");
}
}
// Enforce block.nVersion=2 rule that the coinbase starts with serialized block height
if (nVersion >= 2)
{
// if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet):
if ((!fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 750, 1000)) ||
(fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 51, 100)))
{
CScript expect = CScript() << nHeight;
if (!std::equal(expect.begin(), expect.end(), vtx[0].vin[0].scriptSig.begin()))
return DoS(100, error("AcceptBlock() : block height mismatch in coinbase"));
}
}
// Write block to history file
unsigned int nBlockSize = ::GetSerializeSize(*this, SER_DISK, CLIENT_VERSION);
if (!CheckDiskSpace(::GetSerializeSize(*this, SER_DISK, CLIENT_VERSION)))
return error("AcceptBlock() : out of disk space");
CDiskBlockPos blockPos;
if (!FindBlockPos(blockPos, nBlockSize+8, nHeight, nTime))
return error("AcceptBlock() : FindBlockPos failed");
if (!WriteToDisk(blockPos))
return error("AcceptBlock() : WriteToDisk failed");
if (!AddToBlockIndex(blockPos))
return error("AcceptBlock() : AddToBlockIndex failed");
// Relay inventory, but don't relay old inventory during initial block download
int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate();
if (hashBestChain == hash)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate))
pnode->PushInventory(CInv(MSG_BLOCK, hash));
}
return true;
}
bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck)
{
unsigned int nFound = 0;
for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
bool ProcessBlock(CNode* pfrom, CBlock* pblock)
{
// Check for duplicate
uint256 hash = pblock->GetHash();
if (mapBlockIndex.count(hash))
return error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().substr(0,20).c_str());
if (mapOrphanBlocks.count(hash))
return error("ProcessBlock() : already have block (orphan) %s", hash.ToString().substr(0,20).c_str());
// Preliminary checks
if (!pblock->CheckBlock())
return error("ProcessBlock() : CheckBlock FAILED");
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && pblock->hashPrevBlock != hashBestChain)
{
// Extra checks to prevent "fill up memory by spamming with bogus blocks"
int64 deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime;
if (deltaTime < 0)
{
if (pfrom)
pfrom->Misbehaving(100);
return error("ProcessBlock() : block with timestamp before last checkpoint");
}
CBigNum bnNewBlock;
bnNewBlock.SetCompact(pblock->nBits);
CBigNum bnRequired;
bnRequired.SetCompact(ComputeMinWork(pcheckpoint->nBits, deltaTime));
if (bnNewBlock > bnRequired)
{
if (pfrom)
pfrom->Misbehaving(100);
return error("ProcessBlock() : block with too little proof-of-work");
}
}
// If we don't already have its previous block, shunt it off to holding area until we get it
if (!mapBlockIndex.count(pblock->hashPrevBlock))
{
printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().substr(0,20).c_str());
// Accept orphans as long as there is a node to request its parents from
if (pfrom) {
CBlock* pblock2 = new CBlock(*pblock);
mapOrphanBlocks.insert(make_pair(hash, pblock2));
mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2));
// Ask this guy to fill in what we're missing
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(pblock2));
}
return true;
}
// Store to disk
if (!pblock->AcceptBlock())
return error("ProcessBlock() : AcceptBlock FAILED");
// Recursively process any orphan blocks that depended on this one
vector<uint256> vWorkQueue;
vWorkQueue.push_back(hash);
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (multimap<uint256, CBlock*>::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev);
mi != mapOrphanBlocksByPrev.upper_bound(hashPrev);
++mi)
{
CBlock* pblockOrphan = (*mi).second;
if (pblockOrphan->AcceptBlock())
vWorkQueue.push_back(pblockOrphan->GetHash());
mapOrphanBlocks.erase(pblockOrphan->GetHash());
delete pblockOrphan;
}
mapOrphanBlocksByPrev.erase(hashPrev);
}
printf("ProcessBlock: ACCEPTED\n");
return true;
}
bool CheckDiskSpace(uint64 nAdditionalBytes)
{
uint64 nFreeBytesAvailable = filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
{
fShutdown = true;
string strMessage = _("Warning: Disk space is low!");
strMiscWarning = strMessage;
printf("*** %s\n", strMessage.c_str());
uiInterface.ThreadSafeMessageBox(strMessage, "Bitcoin", CClientUIInterface::OK | CClientUIInterface::ICON_EXCLAMATION | CClientUIInterface::MODAL);
StartShutdown();
return false;
}
return true;
}
CCriticalSection cs_LastBlockFile;
CBlockFileInfo infoLastBlockFile;
int nLastBlockFile = 0;
FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly)
{
if (pos.IsNull())
return NULL;
boost::filesystem::path path = GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile);
boost::filesystem::create_directories(path.parent_path());
FILE* file = fopen(path.string().c_str(), "rb+");
if (!file && !fReadOnly)
file = fopen(path.string().c_str(), "wb+");
if (!file) {
printf("Unable to open file %s\n", path.string().c_str());
return NULL;
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
printf("Unable to seek to position %u of %s\n", pos.nPos, path.string().c_str());
fclose(file);
return NULL;
}
}
return file;
}
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
FILE *OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
CBlockIndex * InsertBlockIndex(uint256 hash)
{
if (hash == 0)
return NULL;
// Return existing
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
if (!pindexNew)
throw runtime_error("LoadBlockIndex() : new CBlockIndex failed");
mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool static LoadBlockIndexDB()
{
if (!pblocktree->LoadBlockIndexGuts())
return false;
if (fRequestShutdown)
return true;
// Calculate bnChainWork
vector<pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->bnChainWork = (pindex->pprev ? pindex->pprev->bnChainWork : 0) + pindex->GetBlockWork();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS && !(pindex->nStatus & BLOCK_FAILED_MASK))
setBlockIndexValid.insert(pindex);
}
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
printf("LoadBlockIndex(): last block file = %i\n", nLastBlockFile);
if (pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile))
printf("LoadBlockIndex(): last block file: %s\n", infoLastBlockFile.ToString().c_str());
// Load hashBestChain pointer to end of best chain
pindexBest = pcoinsTip->GetBestBlock();
if (pindexBest == NULL)
{
if (pindexGenesisBlock == NULL)
return true;
}
hashBestChain = pindexBest->GetBlockHash();
nBestHeight = pindexBest->nHeight;
bnBestChainWork = pindexBest->bnChainWork;
// set 'next' pointers in best chain
CBlockIndex *pindex = pindexBest;
while(pindex != NULL && pindex->pprev != NULL) {
CBlockIndex *pindexPrev = pindex->pprev;
pindexPrev->pnext = pindex;
pindex = pindexPrev;
}
printf("LoadBlockIndex(): hashBestChain=%s height=%d date=%s\n",
hashBestChain.ToString().substr(0,20).c_str(), nBestHeight,
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str());
// Load bnBestInvalidWork, OK if it doesn't exist
pblocktree->ReadBestInvalidWork(bnBestInvalidWork);
// Verify blocks in the best chain
int nCheckLevel = GetArg("-checklevel", 1);
int nCheckDepth = GetArg( "-checkblocks", 2500);
if (nCheckDepth == 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > nBestHeight)
nCheckDepth = nBestHeight;
printf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CBlockIndex* pindexFork = NULL;
for (CBlockIndex* pindex = pindexBest; pindex && pindex->pprev; pindex = pindex->pprev)
{
if (fRequestShutdown || pindex->nHeight < nBestHeight-nCheckDepth)
break;
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("LoadBlockIndex() : block.ReadFromDisk failed");
// check level 1: verify block validity
if (nCheckLevel>0 && !block.CheckBlock())
{
printf("LoadBlockIndex() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
pindexFork = pindex->pprev;
}
// TODO: stronger verifications
}
if (pindexFork && !fRequestShutdown)
{
// TODO: reorg back
return error("LoadBlockIndex(): chain database corrupted");
}
return true;
}
bool LoadBlockIndex(bool fAllowNew)
{
if (fTestNet)
{
pchMessageStart[0] = 0x0b;
pchMessageStart[1] = 0x11;
pchMessageStart[2] = 0x09;
pchMessageStart[3] = 0x07;
hashGenesisBlock = uint256("000000000933ea01ad0ee984209779baaec3ced90fa3f408719526f8d77f4943");
}
//
// Load block index from databases
//
if (!LoadBlockIndexDB())
return false;
//
// Init with genesis block
//
if (mapBlockIndex.empty())
{
if (!fAllowNew)
return false;
// Genesis Block:
// CBlock(hash=000000000019d6, ver=1, hashPrevBlock=00000000000000, hashMerkleRoot=4a5e1e, nTime=1231006505, nBits=1d00ffff, nNonce=2083236893, vtx=1)
// CTransaction(hash=4a5e1e, ver=1, vin.size=1, vout.size=1, nLockTime=0)
// CTxIn(COutPoint(000000, -1), coinbase 04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73)
// CTxOut(nValue=50.00000000, scriptPubKey=0x5F1DF16B2B704C8A578D0B)
// vMerkleTree: 4a5e1e
// Genesis block
const char* pszTimestamp = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks";
CTransaction txNew;
txNew.vin.resize(1);
txNew.vout.resize(1);
txNew.vin[0].scriptSig = CScript() << 486604799 << CBigNum(4) << vector<unsigned char>((const unsigned char*)pszTimestamp, (const unsigned char*)pszTimestamp + strlen(pszTimestamp));
txNew.vout[0].nValue = 50 * COIN;
txNew.vout[0].scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG;
CBlock block;
block.vtx.push_back(txNew);
block.hashPrevBlock = 0;
block.hashMerkleRoot = block.BuildMerkleTree();
block.nVersion = 1;
block.nTime = 1231006505;
block.nBits = 0x1d00ffff;
block.nNonce = 2083236893;
if (fTestNet)
{
block.nTime = 1296688602;
block.nNonce = 414098458;
}
//// debug print
uint256 hash = block.GetHash();
printf("%s\n", hash.ToString().c_str());
printf("%s\n", hashGenesisBlock.ToString().c_str());
printf("%s\n", block.hashMerkleRoot.ToString().c_str());
assert(block.hashMerkleRoot == uint256("0x4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"));
block.print();
assert(hash == hashGenesisBlock);
// Start new block file
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
if (!FindBlockPos(blockPos, nBlockSize+8, 0, block.nTime))
return error("AcceptBlock() : FindBlockPos failed");
if (!block.WriteToDisk(blockPos))
return error("LoadBlockIndex() : writing genesis block to disk failed");
if (!block.AddToBlockIndex(blockPos))
return error("LoadBlockIndex() : genesis block not accepted");
}
return true;
}
void PrintBlockTree()
{
// pre-compute tree structure
map<CBlockIndex*, vector<CBlockIndex*> > mapNext;
for (map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi)
{
CBlockIndex* pindex = (*mi).second;
mapNext[pindex->pprev].push_back(pindex);
// test
//while (rand() % 3 == 0)
// mapNext[pindex->pprev].push_back(pindex);
}
vector<pair<int, CBlockIndex*> > vStack;
vStack.push_back(make_pair(0, pindexGenesisBlock));
int nPrevCol = 0;
while (!vStack.empty())
{
int nCol = vStack.back().first;
CBlockIndex* pindex = vStack.back().second;
vStack.pop_back();
// print split or gap
if (nCol > nPrevCol)
{
for (int i = 0; i < nCol-1; i++)
printf("| ");
printf("|\\\n");
}
else if (nCol < nPrevCol)
{
for (int i = 0; i < nCol; i++)
printf("| ");
printf("|\n");
}
nPrevCol = nCol;
// print columns
for (int i = 0; i < nCol; i++)
printf("| ");
// print item
CBlock block;
block.ReadFromDisk(pindex);
printf("%d (blk%05u.dat:0x%x) %s tx %"PRIszu"",
pindex->nHeight,
pindex->GetBlockPos().nFile, pindex->GetBlockPos().nPos,
DateTimeStrFormat("%x %H:%M:%S", block.GetBlockTime()).c_str(),
block.vtx.size());
PrintWallets(block);
// put the main time-chain first
vector<CBlockIndex*>& vNext = mapNext[pindex];
for (unsigned int i = 0; i < vNext.size(); i++)
{
if (vNext[i]->pnext)
{
swap(vNext[0], vNext[i]);
break;
}
}
// iterate children
for (unsigned int i = 0; i < vNext.size(); i++)
vStack.push_back(make_pair(nCol+i, vNext[i]));
}
}
bool LoadExternalBlockFile(FILE* fileIn)
{
int64 nStart = GetTimeMillis();
int nLoaded = 0;
{
try {
CAutoFile blkdat(fileIn, SER_DISK, CLIENT_VERSION);
unsigned int nPos = 0;
while (nPos != (unsigned int)-1 && blkdat.good() && !fRequestShutdown)
{
unsigned char pchData[65536];
do {
fseek(blkdat, nPos, SEEK_SET);
int nRead = fread(pchData, 1, sizeof(pchData), blkdat);
if (nRead <= 8)
{
nPos = (unsigned int)-1;
break;
}
void* nFind = memchr(pchData, pchMessageStart[0], nRead+1-sizeof(pchMessageStart));
if (nFind)
{
if (memcmp(nFind, pchMessageStart, sizeof(pchMessageStart))==0)
{
nPos += ((unsigned char*)nFind - pchData) + sizeof(pchMessageStart);
break;
}
nPos += ((unsigned char*)nFind - pchData) + 1;
}
else
nPos += sizeof(pchData) - sizeof(pchMessageStart) + 1;
} while(!fRequestShutdown);
if (nPos == (unsigned int)-1)
break;
fseek(blkdat, nPos, SEEK_SET);
unsigned int nSize;
blkdat >> nSize;
if (nSize > 0 && nSize <= MAX_BLOCK_SIZE)
{
CBlock block;
blkdat >> block;
LOCK(cs_main);
if (ProcessBlock(NULL,&block))
{
nLoaded++;
nPos += 4 + nSize;
}
}
}
}
catch (std::exception &e) {
printf("%s() : Deserialize or I/O error caught during load\n",
__PRETTY_FUNCTION__);
}
}
printf("Loaded %i blocks from external file in %"PRI64d"ms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
struct CImportingNow
{
CImportingNow() {
assert(fImporting == false);
fImporting = true;
}
~CImportingNow() {
assert(fImporting == true);
fImporting = false;
}
};
void ThreadImport(void *data) {
std::vector<boost::filesystem::path> *vFiles = reinterpret_cast<std::vector<boost::filesystem::path>*>(data);
RenameThread("bitcoin-loadblk");
CImportingNow imp;
vnThreadsRunning[THREAD_IMPORT]++;
// -loadblock=
BOOST_FOREACH(boost::filesystem::path &path, *vFiles) {
FILE *file = fopen(path.string().c_str(), "rb");
if (file)
LoadExternalBlockFile(file);
}
// hardcoded $DATADIR/bootstrap.dat
filesystem::path pathBootstrap = GetDataDir() / "bootstrap.dat";
if (filesystem::exists(pathBootstrap)) {
FILE *file = fopen(pathBootstrap.string().c_str(), "rb");
if (file) {
filesystem::path pathBootstrapOld = GetDataDir() / "bootstrap.dat.old";
LoadExternalBlockFile(file);
RenameOver(pathBootstrap, pathBootstrapOld);
}
}
delete vFiles;
vnThreadsRunning[THREAD_IMPORT]--;
}
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
extern map<uint256, CAlert> mapAlerts;
extern CCriticalSection cs_mapAlerts;
string GetWarnings(string strFor)
{
int nPriority = 0;
string strStatusBar;
string strRPC;
if (GetBoolArg("-testsafemode"))
strRPC = "test";
if (!CLIENT_VERSION_IS_RELEASE)
strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications");
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
nPriority = 1000;
strStatusBar = strMiscWarning;
}
// Longer invalid proof-of-work chain
if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6)
{
nPriority = 2000;
strStatusBar = strRPC = _("Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.");
}
// Alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
{
const CAlert& alert = item.second;
if (alert.AppliesToMe() && alert.nPriority > nPriority)
{
nPriority = alert.nPriority;
strStatusBar = alert.strStatusBar;
}
}
}
if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings() : invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(const CInv& inv)
{
switch (inv.type)
{
case MSG_TX:
{
bool txInMap = false;
{
LOCK(mempool.cs);
txInMap = mempool.exists(inv.hash);
}
return txInMap || mapOrphanTransactions.count(inv.hash) ||
pcoinsTip->HaveCoins(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash) ||
mapOrphanBlocks.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
// The message start string is designed to be unlikely to occur in normal data.
// The characters are rarely used upper ASCII, not valid as UTF-8, and produce
// a large 4-byte int at any alignment.
unsigned char pchMessageStart[4] = { 0xf9, 0xbe, 0xb4, 0xd9 };
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
{
static map<CService, CPubKey> mapReuseKey;
RandAddSeedPerfmon();
if (fDebug)
printf("received: %s (%"PRIszu" bytes)\n", strCommand.c_str(), vRecv.size());
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
printf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (strCommand == "version")
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->Misbehaving(1);
return false;
}
int64 nTime;
CAddress addrMe;
CAddress addrFrom;
uint64 nNonce = 1;
vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe;
if (pfrom->nVersion < MIN_PROTO_VERSION)
{
// Since February 20, 2012, the protocol is initiated at version 209,
// and earlier versions are no longer supported
printf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion);
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty())
vRecv >> pfrom->strSubVer;
if (!vRecv.empty())
vRecv >> pfrom->nStartingHeight;
if (pfrom->fInbound && addrMe.IsRoutable())
{
pfrom->addrLocal = addrMe;
SeenLocal(addrMe);
}
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str());
pfrom->fDisconnect = true;
return true;
}
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
AddTimeData(pfrom->addr, nTime);
// Change version
pfrom->PushMessage("verack");
pfrom->vSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (!fNoListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
pfrom->PushAddress(addr);
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Ask the first connected node for block updates
static int nAskedForBlocks = 0;
if (!pfrom->fClient && !pfrom->fOneShot && !fImporting &&
(pfrom->nStartingHeight > (nBestHeight - 144)) &&
(pfrom->nVersion < NOBLKS_VERSION_START ||
pfrom->nVersion >= NOBLKS_VERSION_END) &&
(nAskedForBlocks < 1 || vNodes.size() <= 1))
{
nAskedForBlocks++;
pfrom->PushGetBlocks(pindexBest, uint256(0));
}
// Relay alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
item.second.RelayTo(pfrom);
}
pfrom->fSuccessfullyConnected = true;
printf("receive version message: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString().c_str(), addrFrom.ToString().c_str(), pfrom->addr.ToString().c_str());
cPeerBlockCounts.input(pfrom->nStartingHeight);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
pfrom->Misbehaving(1);
return false;
}
else if (strCommand == "verack")
{
pfrom->vRecv.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
}
else if (strCommand == "addr")
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
pfrom->Misbehaving(20);
return error("message addr size() = %"PRIszu"", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64 nNow = GetAdjustedTime();
int64 nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
if (fShutdown)
return true;
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the setAddrKnowns of the chosen nodes prevent repeats
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint64 hashAddr = addr.GetHash();
uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60));
hashRand = Hash(BEGIN(hashRand), END(hashRand));
multimap<uint256, CNode*> mapMix;
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
unsigned int nPointer;
memcpy(&nPointer, &pnode, sizeof(nPointer));
uint256 hashKey = hashRand ^ nPointer;
hashKey = Hash(BEGIN(hashKey), END(hashKey));
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint256, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == "inv")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message inv size() = %"PRIszu"", vInv.size());
}
// find last block in inv vector
unsigned int nLastBlock = (unsigned int)(-1);
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) {
if (vInv[vInv.size() - 1 - nInv].type == MSG_BLOCK) {
nLastBlock = vInv.size() - 1 - nInv;
break;
}
}
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
if (fShutdown)
return true;
pfrom->AddInventoryKnown(inv);
bool fAlreadyHave = AlreadyHave(inv);
if (fDebug)
printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new");
if (!fAlreadyHave) {
if (!fImporting)
pfrom->AskFor(inv);
} else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) {
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash]));
} else if (nInv == nLastBlock) {
// In case we are on a very long side-chain, it is possible that we already have
// the last block in an inv bundle sent in response to getblocks. Try to detect
// this situation and push another getblocks to continue.
pfrom->PushGetBlocks(mapBlockIndex[inv.hash], uint256(0));
if (fDebug)
printf("force request: %s\n", inv.ToString().c_str());
}
// Track requests for our stuff
Inventory(inv.hash);
}
}
else if (strCommand == "getdata")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message getdata size() = %"PRIszu"", vInv.size());
}
if (fDebugNet || (vInv.size() != 1))
printf("received getdata (%"PRIszu" invsz)\n", vInv.size());
BOOST_FOREACH(const CInv& inv, vInv)
{
if (fShutdown)
return true;
if (fDebugNet || (vInv.size() == 1))
printf("received getdata for: %s\n", inv.ToString().c_str());
if (inv.type == MSG_BLOCK)
{
// Send block from disk
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
CBlock block;
block.ReadFromDisk((*mi).second);
pfrom->PushMessage("block", block);
// Trigger them to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, hashBestChain));
pfrom->PushMessage("inv", vInv);
pfrom->hashContinue = 0;
}
}
}
else if (inv.IsKnownType())
{
// Send stream from relay memory
bool pushed = false;
{
LOCK(cs_mapRelay);
map<CInv, CDataStream>::iterator mi = mapRelay.find(inv);
if (mi != mapRelay.end()) {
pfrom->PushMessage(inv.GetCommand(), (*mi).second);
pushed = true;
}
}
if (!pushed && inv.type == MSG_TX) {
LOCK(mempool.cs);
if (mempool.exists(inv.hash)) {
CTransaction tx = mempool.lookup(inv.hash);
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(1000);
ss << tx;
pfrom->PushMessage("tx", ss);
}
}
}
// Track requests for our stuff
Inventory(inv.hash);
}
}
else if (strCommand == "getblocks")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
// Find the last block the caller has in the main chain
CBlockIndex* pindex = locator.GetBlockIndex();
// Send the rest of the chain
if (pindex)
pindex = pindex->pnext;
int nLimit = 500;
printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit);
for (; pindex; pindex = pindex->pnext)
{
if (pindex->GetBlockHash() == hashStop)
{
printf(" getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll make them
// getblocks the next batch of inventory.
printf(" getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == "getheaders")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = locator.GetBlockIndex();
if (pindex)
pindex = pindex->pnext;
}
vector<CBlock> vHeaders;
int nLimit = 2000;
printf("getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str());
for (; pindex; pindex = pindex->pnext)
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
pfrom->PushMessage("headers", vHeaders);
}
else if (strCommand == "tx")
{
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CDataStream vMsg(vRecv);
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
bool fMissingInputs = false;
if (tx.AcceptToMemoryPool(true, &fMissingInputs))
{
SyncWithWallets(inv.hash, tx, NULL, true);
RelayMessage(inv, vMsg);
mapAlreadyAskedFor.erase(inv);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
// Recursively process any orphan transactions that depended on this one
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (map<uint256, CDataStream*>::iterator mi = mapOrphanTransactionsByPrev[hashPrev].begin();
mi != mapOrphanTransactionsByPrev[hashPrev].end();
++mi)
{
const CDataStream& vMsg = *((*mi).second);
CTransaction tx;
CDataStream(vMsg) >> tx;
CInv inv(MSG_TX, tx.GetHash());
bool fMissingInputs2 = false;
if (tx.AcceptToMemoryPool(true, &fMissingInputs2))
{
printf(" accepted orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str());
SyncWithWallets(inv.hash, tx, NULL, true);
RelayMessage(inv, vMsg);
mapAlreadyAskedFor.erase(inv);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
}
else if (!fMissingInputs2)
{
// invalid orphan
vEraseQueue.push_back(inv.hash);
printf(" removed invalid orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str());
}
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(vMsg);
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nEvicted = LimitOrphanTxSize(MAX_ORPHAN_TRANSACTIONS);
if (nEvicted > 0)
printf("mapOrphan overflow, removed %u tx\n", nEvicted);
}
if (tx.nDoS) pfrom->Misbehaving(tx.nDoS);
}
else if (strCommand == "block")
{
CBlock block;
vRecv >> block;
printf("received block %s\n", block.GetHash().ToString().substr(0,20).c_str());
// block.print();
CInv inv(MSG_BLOCK, block.GetHash());
pfrom->AddInventoryKnown(inv);
if (ProcessBlock(pfrom, &block))
mapAlreadyAskedFor.erase(inv);
if (block.nDoS) pfrom->Misbehaving(block.nDoS);
}
else if (strCommand == "getaddr")
{
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr);
}
else if (strCommand == "mempool")
{
std::vector<uint256> vtxid;
mempool.queryHashes(vtxid);
vector<CInv> vInv;
for (unsigned int i = 0; i < vtxid.size(); i++) {
CInv inv(MSG_TX, vtxid[i]);
vInv.push_back(inv);
if (i == (MAX_INV_SZ - 1))
break;
}
if (vInv.size() > 0)
pfrom->PushMessage("inv", vInv);
}
else if (strCommand == "checkorder")
{
uint256 hashReply;
vRecv >> hashReply;
if (!GetBoolArg("-allowreceivebyip"))
{
pfrom->PushMessage("reply", hashReply, (int)2, string(""));
return true;
}
CWalletTx order;
vRecv >> order;
/// we have a chance to check the order here
// Keep giving the same key to the same ip until they use it
if (!mapReuseKey.count(pfrom->addr))
pwalletMain->GetKeyFromPool(mapReuseKey[pfrom->addr], true);
// Send back approval of order and pubkey to use
CScript scriptPubKey;
scriptPubKey << mapReuseKey[pfrom->addr] << OP_CHECKSIG;
pfrom->PushMessage("reply", hashReply, (int)0, scriptPubKey);
}
else if (strCommand == "reply")
{
uint256 hashReply;
vRecv >> hashReply;
CRequestTracker tracker;
{
LOCK(pfrom->cs_mapRequests);
map<uint256, CRequestTracker>::iterator mi = pfrom->mapRequests.find(hashReply);
if (mi != pfrom->mapRequests.end())
{
tracker = (*mi).second;
pfrom->mapRequests.erase(mi);
}
}
if (!tracker.IsNull())
tracker.fn(tracker.param1, vRecv);
}
else if (strCommand == "ping")
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64 nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage("pong", nonce);
}
}
else if (strCommand == "alert")
{
CAlert alert;
vRecv >> alert;
uint256 alertHash = alert.GetHash();
if (pfrom->setKnown.count(alertHash) == 0)
{
if (alert.ProcessAlert())
{
// Relay
pfrom->setKnown.insert(alertHash);
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
alert.RelayTo(pnode);
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
pfrom->Misbehaving(10);
}
}
}
else
{
// Ignore unknown commands for extensibility
}
// Update the last seen time for this node's address
if (pfrom->fNetworkNode)
if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping")
AddressCurrentlyConnected(pfrom->addr);
return true;
}
bool ProcessMessages(CNode* pfrom)
{
CDataStream& vRecv = pfrom->vRecv;
if (vRecv.empty())
return true;
//if (fDebug)
// printf("ProcessMessages(%u bytes)\n", vRecv.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
loop
{
// Don't bother if send buffer is too full to respond anyway
if (pfrom->vSend.size() >= SendBufferSize())
break;
// Scan for message start
CDataStream::iterator pstart = search(vRecv.begin(), vRecv.end(), BEGIN(pchMessageStart), END(pchMessageStart));
int nHeaderSize = vRecv.GetSerializeSize(CMessageHeader());
if (vRecv.end() - pstart < nHeaderSize)
{
if ((int)vRecv.size() > nHeaderSize)
{
printf("\n\nPROCESSMESSAGE MESSAGESTART NOT FOUND\n\n");
vRecv.erase(vRecv.begin(), vRecv.end() - nHeaderSize);
}
break;
}
if (pstart - vRecv.begin() > 0)
printf("\n\nPROCESSMESSAGE SKIPPED %"PRIpdd" BYTES\n\n", pstart - vRecv.begin());
vRecv.erase(vRecv.begin(), pstart);
// Read header
vector<char> vHeaderSave(vRecv.begin(), vRecv.begin() + nHeaderSize);
CMessageHeader hdr;
vRecv >> hdr;
if (!hdr.IsValid())
{
printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str());
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
if (nMessageSize > MAX_SIZE)
{
printf("ProcessMessages(%s, %u bytes) : nMessageSize > MAX_SIZE\n", strCommand.c_str(), nMessageSize);
continue;
}
if (nMessageSize > vRecv.size())
{
// Rewind and wait for rest of message
vRecv.insert(vRecv.begin(), vHeaderSave.begin(), vHeaderSave.end());
break;
}
// Checksum
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
if (nChecksum != hdr.nChecksum)
{
printf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n",
strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum);
continue;
}
// Copy message to its own buffer
CDataStream vMsg(vRecv.begin(), vRecv.begin() + nMessageSize, vRecv.nType, vRecv.nVersion);
vRecv.ignore(nMessageSize);
// Process message
bool fRet = false;
try
{
{
LOCK(cs_main);
fRet = ProcessMessage(pfrom, strCommand, vMsg);
}
if (fShutdown)
return true;
}
catch (std::ios_base::failure& e)
{
if (strstr(e.what(), "end of data"))
{
// Allow exceptions from under-length message on vRecv
printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand.c_str(), nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
// Allow exceptions from over-long size
printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand.c_str(), nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
printf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand.c_str(), nMessageSize);
}
vRecv.Compact();
return true;
}
bool SendMessages(CNode* pto, bool fSendTrickle)
{
TRY_LOCK(cs_main, lockMain);
if (lockMain) {
// Don't send anything until we get their version message
if (pto->nVersion == 0)
return true;
// Keep-alive ping. We send a nonce of zero because we don't use it anywhere
// right now.
if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSend.empty()) {
uint64 nonce = 0;
if (pto->nVersion > BIP0031_VERSION)
pto->PushMessage("ping", nonce);
else
pto->PushMessage("ping");
}
// Resend wallet transactions that haven't gotten in a block yet
ResendWalletTransactions();
// Address refresh broadcast
static int64 nLastRebroadcast;
if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60))
{
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
{
// Periodically clear setAddrKnown to allow refresh broadcasts
if (nLastRebroadcast)
pnode->setAddrKnown.clear();
// Rebroadcast our address
if (!fNoListen)
{
CAddress addr = GetLocalAddress(&pnode->addr);
if (addr.IsRoutable())
pnode->PushAddress(addr);
}
}
}
nLastRebroadcast = GetTime();
}
//
// Message: addr
//
if (fSendTrickle)
{
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
// returns true if wasn't already contained in the set
if (pto->setAddrKnown.insert(addr).second)
{
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
pto->PushMessage("addr", vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
pto->PushMessage("addr", vAddr);
}
//
// Message: inventory
//
vector<CInv> vInv;
vector<CInv> vInvWait;
{
LOCK(pto->cs_inventory);
vInv.reserve(pto->vInventoryToSend.size());
vInvWait.reserve(pto->vInventoryToSend.size());
BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend)
{
if (pto->setInventoryKnown.count(inv))
continue;
// trickle out tx inv to protect privacy
if (inv.type == MSG_TX && !fSendTrickle)
{
// 1/4 of tx invs blast to all immediately
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint256 hashRand = inv.hash ^ hashSalt;
hashRand = Hash(BEGIN(hashRand), END(hashRand));
bool fTrickleWait = ((hashRand & 3) != 0);
// always trickle our own transactions
if (!fTrickleWait)
{
CWalletTx wtx;
if (GetTransaction(inv.hash, wtx))
if (wtx.fFromMe)
fTrickleWait = true;
}
if (fTrickleWait)
{
vInvWait.push_back(inv);
continue;
}
}
// returns true if wasn't already contained in the set
if (pto->setInventoryKnown.insert(inv).second)
{
vInv.push_back(inv);
if (vInv.size() >= 1000)
{
pto->PushMessage("inv", vInv);
vInv.clear();
}
}
}
pto->vInventoryToSend = vInvWait;
}
if (!vInv.empty())
pto->PushMessage("inv", vInv);
//
// Message: getdata
//
vector<CInv> vGetData;
int64 nNow = GetTime() * 1000000;
while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(inv))
{
if (fDebugNet)
printf("sending getdata: %s\n", inv.ToString().c_str());
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
pto->PushMessage("getdata", vGetData);
vGetData.clear();
}
mapAlreadyAskedFor[inv] = nNow;
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
pto->PushMessage("getdata", vGetData);
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
//
// BitcoinMiner
//
int static FormatHashBlocks(void* pbuffer, unsigned int len)
{
unsigned char* pdata = (unsigned char*)pbuffer;
unsigned int blocks = 1 + ((len + 8) / 64);
unsigned char* pend = pdata + 64 * blocks;
memset(pdata + len, 0, 64 * blocks - len);
pdata[len] = 0x80;
unsigned int bits = len * 8;
pend[-1] = (bits >> 0) & 0xff;
pend[-2] = (bits >> 8) & 0xff;
pend[-3] = (bits >> 16) & 0xff;
pend[-4] = (bits >> 24) & 0xff;
return blocks;
}
static const unsigned int pSHA256InitState[8] =
{0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
void SHA256Transform(void* pstate, void* pinput, const void* pinit)
{
SHA256_CTX ctx;
unsigned char data[64];
SHA256_Init(&ctx);
for (int i = 0; i < 16; i++)
((uint32_t*)data)[i] = ByteReverse(((uint32_t*)pinput)[i]);
for (int i = 0; i < 8; i++)
ctx.h[i] = ((uint32_t*)pinit)[i];
SHA256_Update(&ctx, data, sizeof(data));
for (int i = 0; i < 8; i++)
((uint32_t*)pstate)[i] = ctx.h[i];
}
//
// ScanHash scans nonces looking for a hash with at least some zero bits.
// It operates on big endian data. Caller does the byte reversing.
// All input buffers are 16-byte aligned. nNonce is usually preserved
// between calls, but periodically or if nNonce is 0xffff0000 or above,
// the block is rebuilt and nNonce starts over at zero.
//
unsigned int static ScanHash_CryptoPP(char* pmidstate, char* pdata, char* phash1, char* phash, unsigned int& nHashesDone)
{
unsigned int& nNonce = *(unsigned int*)(pdata + 12);
for (;;)
{
// Crypto++ SHA256
// Hash pdata using pmidstate as the starting state into
// pre-formatted buffer phash1, then hash phash1 into phash
nNonce++;
SHA256Transform(phash1, pdata, pmidstate);
SHA256Transform(phash, phash1, pSHA256InitState);
// Return the nonce if the hash has at least some zero bits,
// caller will check if it has enough to reach the target
if (((unsigned short*)phash)[14] == 0)
return nNonce;
// If nothing found after trying for a while, return -1
if ((nNonce & 0xffff) == 0)
{
nHashesDone = 0xffff+1;
return (unsigned int) -1;
}
}
}
// Some explaining would be appreciated
class COrphan
{
public:
CTransaction* ptx;
set<uint256> setDependsOn;
double dPriority;
double dFeePerKb;
COrphan(CTransaction* ptxIn)
{
ptx = ptxIn;
dPriority = dFeePerKb = 0;
}
void print() const
{
printf("COrphan(hash=%s, dPriority=%.1f, dFeePerKb=%.1f)\n",
ptx->GetHash().ToString().substr(0,10).c_str(), dPriority, dFeePerKb);
BOOST_FOREACH(uint256 hash, setDependsOn)
printf(" setDependsOn %s\n", hash.ToString().substr(0,10).c_str());
}
};
uint64 nLastBlockTx = 0;
uint64 nLastBlockSize = 0;
// We want to sort transactions by priority and fee, so:
typedef boost::tuple<double, double, CTransaction*> TxPriority;
class TxPriorityCompare
{
bool byFee;
public:
TxPriorityCompare(bool _byFee) : byFee(_byFee) { }
bool operator()(const TxPriority& a, const TxPriority& b)
{
if (byFee)
{
if (a.get<1>() == b.get<1>())
return a.get<0>() < b.get<0>();
return a.get<1>() < b.get<1>();
}
else
{
if (a.get<0>() == b.get<0>())
return a.get<1>() < b.get<1>();
return a.get<0>() < b.get<0>();
}
}
};
const char* pszDummy = "\0\0";
CScript scriptDummy(std::vector<unsigned char>(pszDummy, pszDummy + sizeof(pszDummy)));
CBlock* CreateNewBlock(CReserveKey& reservekey)
{
CBlockIndex* pindexPrev = pindexBest;
// Create new block
auto_ptr<CBlock> pblock(new CBlock());
if (!pblock.get())
return NULL;
// Create coinbase tx
CTransaction txNew;
txNew.vin.resize(1);
txNew.vin[0].prevout.SetNull();
txNew.vout.resize(1);
txNew.vout[0].scriptPubKey << reservekey.GetReservedKey() << OP_CHECKSIG;
// Add our coinbase tx as first transaction
pblock->vtx.push_back(txNew);
// Largest block you're willing to create:
unsigned int nBlockMaxSize = GetArg("-blockmaxsize", MAX_BLOCK_SIZE_GEN/2);
// Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity:
nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SIZE-1000), nBlockMaxSize));
// How much of the block should be dedicated to high-priority transactions,
// included regardless of the fees they pay
unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", 27000);
nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize);
// Minimum block size you want to create; block will be filled with free transactions
// until there are no more or the block reaches this size:
unsigned int nBlockMinSize = GetArg("-blockminsize", 0);
nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize);
// Fee-per-kilobyte amount considered the same as "free"
// Be careful setting this: if you set it to zero then
// a transaction spammer can cheaply fill blocks using
// 1-satoshi-fee transactions. It should be set above the real
// cost to you of processing a transaction.
int64 nMinTxFee = MIN_TX_FEE;
if (mapArgs.count("-mintxfee"))
ParseMoney(mapArgs["-mintxfee"], nMinTxFee);
// Collect memory pool transactions into the block
int64 nFees = 0;
{
LOCK2(cs_main, mempool.cs);
CCoinsViewCache view(*pcoinsTip, true);
// Priority order to process transactions
list<COrphan> vOrphan; // list memory doesn't move
map<uint256, vector<COrphan*> > mapDependers;
// This vector will be sorted into a priority queue:
vector<TxPriority> vecPriority;
vecPriority.reserve(mempool.mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi)
{
CTransaction& tx = (*mi).second;
if (tx.IsCoinBase() || !tx.IsFinal())
continue;
COrphan* porphan = NULL;
double dPriority = 0;
int64 nTotalIn = 0;
bool fMissingInputs = false;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Read prev transaction
CCoins coins;
if (!view.GetCoins(txin.prevout.hash, coins))
{
// This should never happen; all transactions in the memory
// pool should connect to either transactions in the chain
// or other transactions in the memory pool.
if (!mempool.mapTx.count(txin.prevout.hash))
{
printf("ERROR: mempool transaction missing input\n");
if (fDebug) assert("mempool transaction missing input" == 0);
fMissingInputs = true;
if (porphan)
vOrphan.pop_back();
break;
}
// Has to wait for dependencies
if (!porphan)
{
// Use list for automatic deletion
vOrphan.push_back(COrphan(&tx));
porphan = &vOrphan.back();
}
mapDependers[txin.prevout.hash].push_back(porphan);
porphan->setDependsOn.insert(txin.prevout.hash);
nTotalIn += mempool.mapTx[txin.prevout.hash].vout[txin.prevout.n].nValue;
continue;
}
int64 nValueIn = coins.vout[txin.prevout.n].nValue;
nTotalIn += nValueIn;
int nConf = pindexPrev->nHeight - coins.nHeight + 1;
dPriority += (double)nValueIn * nConf;
}
if (fMissingInputs) continue;
// Priority is sum(valuein * age) / txsize
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
dPriority /= nTxSize;
// This is a more accurate fee-per-kilobyte than is used by the client code, because the
// client code rounds up the size to the nearest 1K. That's good, because it gives an
// incentive to create smaller transactions.
double dFeePerKb = double(nTotalIn-tx.GetValueOut()) / (double(nTxSize)/1000.0);
if (porphan)
{
porphan->dPriority = dPriority;
porphan->dFeePerKb = dFeePerKb;
}
else
vecPriority.push_back(TxPriority(dPriority, dFeePerKb, &(*mi).second));
}
// Collect transactions into block
uint64 nBlockSize = 1000;
uint64 nBlockTx = 0;
int nBlockSigOps = 100;
bool fSortedByFee = (nBlockPrioritySize <= 0);
TxPriorityCompare comparer(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
while (!vecPriority.empty())
{
// Take highest priority transaction off the priority queue:
double dPriority = vecPriority.front().get<0>();
double dFeePerKb = vecPriority.front().get<1>();
CTransaction& tx = *(vecPriority.front().get<2>());
std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer);
vecPriority.pop_back();
// second layer cached modifications just for this transaction
CCoinsViewCache viewTemp(view, true);
// Size limits
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
if (nBlockSize + nTxSize >= nBlockMaxSize)
continue;
// Legacy limits on sigOps:
unsigned int nTxSigOps = tx.GetLegacySigOpCount();
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
// Skip free transactions if we're past the minimum block size:
if (fSortedByFee && (dFeePerKb < nMinTxFee) && (nBlockSize + nTxSize >= nBlockMinSize))
continue;
// Prioritize by fee once past the priority size or we run out of high-priority
// transactions:
if (!fSortedByFee &&
((nBlockSize + nTxSize >= nBlockPrioritySize) || (dPriority < COIN * 144 / 250)))
{
fSortedByFee = true;
comparer = TxPriorityCompare(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
if (!tx.HaveInputs(viewTemp))
continue;
int64 nTxFees = tx.GetValueIn(viewTemp)-tx.GetValueOut();
nTxSigOps += tx.GetP2SHSigOpCount(viewTemp);
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
if (!tx.CheckInputs(viewTemp, CS_ALWAYS, true, false))
continue;
CTxUndo txundo;
uint256 hash = tx.GetHash();
if (!tx.UpdateCoins(viewTemp, txundo, pindexPrev->nHeight+1, hash))
continue;
// push changes from the second layer cache to the first one
viewTemp.Flush();
// Added
pblock->vtx.push_back(tx);
nBlockSize += nTxSize;
++nBlockTx;
nBlockSigOps += nTxSigOps;
nFees += nTxFees;
if (fDebug && GetBoolArg("-printpriority"))
{
printf("priority %.1f feeperkb %.1f txid %s\n",
dPriority, dFeePerKb, tx.GetHash().ToString().c_str());
}
// Add transactions that depend on this one to the priority queue
if (mapDependers.count(hash))
{
BOOST_FOREACH(COrphan* porphan, mapDependers[hash])
{
if (!porphan->setDependsOn.empty())
{
porphan->setDependsOn.erase(hash);
if (porphan->setDependsOn.empty())
{
vecPriority.push_back(TxPriority(porphan->dPriority, porphan->dFeePerKb, porphan->ptx));
std::push_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
}
}
}
}
nLastBlockTx = nBlockTx;
nLastBlockSize = nBlockSize;
printf("CreateNewBlock(): total size %"PRI64u"\n", nBlockSize);
pblock->vtx[0].vout[0].nValue = GetBlockValue(pindexPrev->nHeight+1, nFees);
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
pblock->UpdateTime(pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock.get());
pblock->nNonce = 0;
pblock->vtx[0].vin[0].scriptSig = scriptDummy;
CBlockIndex indexDummy(*pblock);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
CCoinsViewCache viewNew(*pcoinsTip, true);
if (!pblock->ConnectBlock(&indexDummy, viewNew, true))
throw std::runtime_error("CreateNewBlock() : ConnectBlock failed");
}
return pblock.release();
}
void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce)
{
// Update nExtraNonce
static uint256 hashPrevBlock;
if (hashPrevBlock != pblock->hashPrevBlock)
{
nExtraNonce = 0;
hashPrevBlock = pblock->hashPrevBlock;
}
++nExtraNonce;
unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2
pblock->vtx[0].vin[0].scriptSig = (CScript() << nHeight << CBigNum(nExtraNonce)) + COINBASE_FLAGS;
assert(pblock->vtx[0].vin[0].scriptSig.size() <= 100);
pblock->hashMerkleRoot = pblock->BuildMerkleTree();
}
void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1)
{
//
// Pre-build hash buffers
//
struct
{
struct unnamed2
{
int nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
}
block;
unsigned char pchPadding0[64];
uint256 hash1;
unsigned char pchPadding1[64];
}
tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.block.nVersion = pblock->nVersion;
tmp.block.hashPrevBlock = pblock->hashPrevBlock;
tmp.block.hashMerkleRoot = pblock->hashMerkleRoot;
tmp.block.nTime = pblock->nTime;
tmp.block.nBits = pblock->nBits;
tmp.block.nNonce = pblock->nNonce;
FormatHashBlocks(&tmp.block, sizeof(tmp.block));
FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1));
// Byte swap all the input buffer
for (unsigned int i = 0; i < sizeof(tmp)/4; i++)
((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]);
// Precalc the first half of the first hash, which stays constant
SHA256Transform(pmidstate, &tmp.block, pSHA256InitState);
memcpy(pdata, &tmp.block, 128);
memcpy(phash1, &tmp.hash1, 64);
}
bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey)
{
uint256 hash = pblock->GetHash();
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
if (hash > hashTarget)
return false;
//// debug print
printf("BitcoinMiner:\n");
printf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex().c_str(), hashTarget.GetHex().c_str());
pblock->print();
printf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str());
// Found a solution
{
LOCK(cs_main);
if (pblock->hashPrevBlock != hashBestChain)
return error("BitcoinMiner : generated block is stale");
// Remove key from key pool
reservekey.KeepKey();
// Track how many getdata requests this block gets
{
LOCK(wallet.cs_wallet);
wallet.mapRequestCount[pblock->GetHash()] = 0;
}
// Process this block the same as if we had received it from another node
if (!ProcessBlock(NULL, pblock))
return error("BitcoinMiner : ProcessBlock, block not accepted");
}
return true;
}
void static ThreadBitcoinMiner(void* parg);
static bool fGenerateBitcoins = false;
static bool fLimitProcessors = false;
static int nLimitProcessors = -1;
void static BitcoinMiner(CWallet *pwallet)
{
printf("BitcoinMiner started\n");
SetThreadPriority(THREAD_PRIORITY_LOWEST);
// Make this thread recognisable as the mining thread
RenameThread("bitcoin-miner");
// Each thread has its own key and counter
CReserveKey reservekey(pwallet);
unsigned int nExtraNonce = 0;
while (fGenerateBitcoins)
{
if (fShutdown)
return;
while (vNodes.empty() || IsInitialBlockDownload())
{
Sleep(1000);
if (fShutdown)
return;
if (!fGenerateBitcoins)
return;
}
//
// Create new block
//
unsigned int nTransactionsUpdatedLast = nTransactionsUpdated;
CBlockIndex* pindexPrev = pindexBest;
auto_ptr<CBlock> pblock(CreateNewBlock(reservekey));
if (!pblock.get())
return;
IncrementExtraNonce(pblock.get(), pindexPrev, nExtraNonce);
printf("Running BitcoinMiner with %"PRIszu" transactions in block (%u bytes)\n", pblock->vtx.size(),
::GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION));
//
// Pre-build hash buffers
//
char pmidstatebuf[32+16]; char* pmidstate = alignup<16>(pmidstatebuf);
char pdatabuf[128+16]; char* pdata = alignup<16>(pdatabuf);
char phash1buf[64+16]; char* phash1 = alignup<16>(phash1buf);
FormatHashBuffers(pblock.get(), pmidstate, pdata, phash1);
unsigned int& nBlockTime = *(unsigned int*)(pdata + 64 + 4);
unsigned int& nBlockBits = *(unsigned int*)(pdata + 64 + 8);
unsigned int& nBlockNonce = *(unsigned int*)(pdata + 64 + 12);
//
// Search
//
int64 nStart = GetTime();
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
uint256 hashbuf[2];
uint256& hash = *alignup<16>(hashbuf);
loop
{
unsigned int nHashesDone = 0;
unsigned int nNonceFound;
// Crypto++ SHA256
nNonceFound = ScanHash_CryptoPP(pmidstate, pdata + 64, phash1,
(char*)&hash, nHashesDone);
// Check if something found
if (nNonceFound != (unsigned int) -1)
{
for (unsigned int i = 0; i < sizeof(hash)/4; i++)
((unsigned int*)&hash)[i] = ByteReverse(((unsigned int*)&hash)[i]);
if (hash <= hashTarget)
{
// Found a solution
pblock->nNonce = ByteReverse(nNonceFound);
assert(hash == pblock->GetHash());
SetThreadPriority(THREAD_PRIORITY_NORMAL);
CheckWork(pblock.get(), *pwalletMain, reservekey);
SetThreadPriority(THREAD_PRIORITY_LOWEST);
break;
}
}
// Meter hashes/sec
static int64 nHashCounter;
if (nHPSTimerStart == 0)
{
nHPSTimerStart = GetTimeMillis();
nHashCounter = 0;
}
else
nHashCounter += nHashesDone;
if (GetTimeMillis() - nHPSTimerStart > 4000)
{
static CCriticalSection cs;
{
LOCK(cs);
if (GetTimeMillis() - nHPSTimerStart > 4000)
{
dHashesPerSec = 1000.0 * nHashCounter / (GetTimeMillis() - nHPSTimerStart);
nHPSTimerStart = GetTimeMillis();
nHashCounter = 0;
static int64 nLogTime;
if (GetTime() - nLogTime > 30 * 60)
{
nLogTime = GetTime();
printf("hashmeter %3d CPUs %6.0f khash/s\n", vnThreadsRunning[THREAD_MINER], dHashesPerSec/1000.0);
}
}
}
}
// Check for stop or if block needs to be rebuilt
if (fShutdown)
return;
if (!fGenerateBitcoins)
return;
if (fLimitProcessors && vnThreadsRunning[THREAD_MINER] > nLimitProcessors)
return;
if (vNodes.empty())
break;
if (nBlockNonce >= 0xffff0000)
break;
if (nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60)
break;
if (pindexPrev != pindexBest)
break;
// Update nTime every few seconds
pblock->UpdateTime(pindexPrev);
nBlockTime = ByteReverse(pblock->nTime);
if (fTestNet)
{
// Changing pblock->nTime can change work required on testnet:
nBlockBits = ByteReverse(pblock->nBits);
hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
}
}
}
}
void static ThreadBitcoinMiner(void* parg)
{
CWallet* pwallet = (CWallet*)parg;
try
{
vnThreadsRunning[THREAD_MINER]++;
BitcoinMiner(pwallet);
vnThreadsRunning[THREAD_MINER]--;
}
catch (std::exception& e) {
vnThreadsRunning[THREAD_MINER]--;
PrintException(&e, "ThreadBitcoinMiner()");
} catch (...) {
vnThreadsRunning[THREAD_MINER]--;
PrintException(NULL, "ThreadBitcoinMiner()");
}
nHPSTimerStart = 0;
if (vnThreadsRunning[THREAD_MINER] == 0)
dHashesPerSec = 0;
printf("ThreadBitcoinMiner exiting, %d threads remaining\n", vnThreadsRunning[THREAD_MINER]);
}
void GenerateBitcoins(bool fGenerate, CWallet* pwallet)
{
fGenerateBitcoins = fGenerate;
nLimitProcessors = GetArg("-genproclimit", -1);
if (nLimitProcessors == 0)
fGenerateBitcoins = false;
fLimitProcessors = (nLimitProcessors != -1);
if (fGenerate)
{
int nProcessors = boost::thread::hardware_concurrency();
printf("%d processors\n", nProcessors);
if (nProcessors < 1)
nProcessors = 1;
if (fLimitProcessors && nProcessors > nLimitProcessors)
nProcessors = nLimitProcessors;
int nAddThreads = nProcessors - vnThreadsRunning[THREAD_MINER];
printf("Starting %d BitcoinMiner threads\n", nAddThreads);
for (int i = 0; i < nAddThreads; i++)
{
if (!NewThread(ThreadBitcoinMiner, pwallet))
printf("Error: NewThread(ThreadBitcoinMiner) failed\n");
Sleep(10);
}
}
}
// Amount compression:
// * If the amount is 0, output 0
// * first, divide the amount (in base units) by the largest power of 10 possible; call the exponent e (e is max 9)
// * if e<9, the last digit of the resulting number cannot be 0; store it as d, and drop it (divide by 10)
// * call the result n
// * output 1 + 10*(9*n + d - 1) + e
// * if e==9, we only know the resulting number is not zero, so output 1 + 10*(n - 1) + 9
// (this is decodable, as d is in [1-9] and e is in [0-9])
uint64 CTxOutCompressor::CompressAmount(uint64 n)
{
if (n == 0)
return 0;
int e = 0;
while (((n % 10) == 0) && e < 9) {
n /= 10;
e++;
}
if (e < 9) {
int d = (n % 10);
assert(d >= 1 && d <= 9);
n /= 10;
return 1 + (n*9 + d - 1)*10 + e;
} else {
return 1 + (n - 1)*10 + 9;
}
}
uint64 CTxOutCompressor::DecompressAmount(uint64 x)
{
// x = 0 OR x = 1+10*(9*n + d - 1) + e OR x = 1+10*(n - 1) + 9
if (x == 0)
return 0;
x--;
// x = 10*(9*n + d - 1) + e
int e = x % 10;
x /= 10;
uint64 n = 0;
if (e < 9) {
// x = 9*n + d - 1
int d = (x % 9) + 1;
x /= 9;
// x = n
n = x*10 + d;
} else {
n = x+1;
}
while (e) {
n *= 10;
e--;
}
return n;
}