bitcoin/src/test/coins_tests.cpp
Lőrinc 6210b70291 coins: spent erase in CoinsViewCacheCursor must not change usage
Assert that spent coins already have zero dynamic size, and remove unused leftover counter
2025-04-20 22:56:35 +02:00

1077 lines
45 KiB
C++

// Copyright (c) 2014-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <addresstype.h>
#include <clientversion.h>
#include <coins.h>
#include <streams.h>
#include <test/util/poolresourcetester.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <txdb.h>
#include <uint256.h>
#include <undo.h>
#include <util/strencodings.h>
#include <map>
#include <string>
#include <variant>
#include <vector>
#include <boost/test/unit_test.hpp>
using namespace util::hex_literals;
int ApplyTxInUndo(Coin&& undo, CCoinsViewCache& view, const COutPoint& out);
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight);
namespace
{
//! equality test
bool operator==(const Coin &a, const Coin &b) {
// Empty Coin objects are always equal.
if (a.IsSpent() && b.IsSpent()) return true;
return a.fCoinBase == b.fCoinBase &&
a.nHeight == b.nHeight &&
a.out == b.out;
}
class CCoinsViewTest : public CCoinsView
{
FastRandomContext& m_rng;
uint256 hashBestBlock_;
std::map<COutPoint, Coin> map_;
public:
CCoinsViewTest(FastRandomContext& rng) : m_rng{rng} {}
std::optional<Coin> GetCoin(const COutPoint& outpoint) const override
{
if (auto it{map_.find(outpoint)}; it != map_.end()) {
if (!it->second.IsSpent() || m_rng.randbool()) {
return it->second; // TODO spent coins shouldn't be returned
}
}
return std::nullopt;
}
uint256 GetBestBlock() const override { return hashBestBlock_; }
bool BatchWrite(CoinsViewCacheCursor& cursor, const uint256& hashBlock) override
{
for (auto it{cursor.Begin()}; it != cursor.End(); it = cursor.NextAndMaybeErase(*it)){
if (it->second.IsDirty()) {
// Same optimization used in CCoinsViewDB is to only write dirty entries.
map_[it->first] = it->second.coin;
if (it->second.coin.IsSpent() && m_rng.randrange(3) == 0) {
// Randomly delete empty entries on write.
map_.erase(it->first);
}
}
}
if (!hashBlock.IsNull())
hashBestBlock_ = hashBlock;
return true;
}
};
class CCoinsViewCacheTest : public CCoinsViewCache
{
public:
explicit CCoinsViewCacheTest(CCoinsView* _base) : CCoinsViewCache(_base) {}
void SelfTest(bool sanity_check = true) const
{
// Manually recompute the dynamic usage of the whole data, and compare it.
size_t ret = memusage::DynamicUsage(cacheCoins);
size_t count = 0;
for (const auto& entry : cacheCoins) {
ret += entry.second.coin.DynamicMemoryUsage();
++count;
}
BOOST_CHECK_EQUAL(GetCacheSize(), count);
BOOST_CHECK_EQUAL(DynamicMemoryUsage(), ret);
if (sanity_check) {
SanityCheck();
}
}
CCoinsMap& map() const { return cacheCoins; }
CoinsCachePair& sentinel() const { return m_sentinel; }
size_t& usage() const { return cachedCoinsUsage; }
};
} // namespace
BOOST_FIXTURE_TEST_SUITE(coins_tests, BasicTestingSetup)
static const unsigned int NUM_SIMULATION_ITERATIONS = 40000;
struct CacheTest : BasicTestingSetup {
// This is a large randomized insert/remove simulation test on a variable-size
// stack of caches on top of CCoinsViewTest.
//
// It will randomly create/update/delete Coin entries to a tip of caches, with
// txids picked from a limited list of random 256-bit hashes. Occasionally, a
// new tip is added to the stack of caches, or the tip is flushed and removed.
//
// During the process, booleans are kept to make sure that the randomized
// operation hits all branches.
//
// If fake_best_block is true, assign a random uint256 to mock the recording
// of best block on flush. This is necessary when using CCoinsViewDB as the base,
// otherwise we'll hit an assertion in BatchWrite.
//
void SimulationTest(CCoinsView* base, bool fake_best_block)
{
// Various coverage trackers.
bool removed_all_caches = false;
bool reached_4_caches = false;
bool added_an_entry = false;
bool added_an_unspendable_entry = false;
bool removed_an_entry = false;
bool updated_an_entry = false;
bool found_an_entry = false;
bool missed_an_entry = false;
bool uncached_an_entry = false;
bool flushed_without_erase = false;
// A simple map to track what we expect the cache stack to represent.
std::map<COutPoint, Coin> result;
// The cache stack.
std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(std::make_unique<CCoinsViewCacheTest>(base)); // Start with one cache.
// Use a limited set of random transaction ids, so we do test overwriting entries.
std::vector<Txid> txids;
txids.resize(NUM_SIMULATION_ITERATIONS / 8);
for (unsigned int i = 0; i < txids.size(); i++) {
txids[i] = Txid::FromUint256(m_rng.rand256());
}
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
// Do a random modification.
{
auto txid = txids[m_rng.randrange(txids.size())]; // txid we're going to modify in this iteration.
Coin& coin = result[COutPoint(txid, 0)];
// Determine whether to test HaveCoin before or after Access* (or both). As these functions
// can influence each other's behaviour by pulling things into the cache, all combinations
// are tested.
bool test_havecoin_before = m_rng.randbits(2) == 0;
bool test_havecoin_after = m_rng.randbits(2) == 0;
bool result_havecoin = test_havecoin_before ? stack.back()->HaveCoin(COutPoint(txid, 0)) : false;
// Infrequently, test usage of AccessByTxid instead of AccessCoin - the
// former just delegates to the latter and returns the first unspent in a txn.
const Coin& entry = (m_rng.randrange(500) == 0) ?
AccessByTxid(*stack.back(), txid) : stack.back()->AccessCoin(COutPoint(txid, 0));
BOOST_CHECK(coin == entry);
if (test_havecoin_before) {
BOOST_CHECK(result_havecoin == !entry.IsSpent());
}
if (test_havecoin_after) {
bool ret = stack.back()->HaveCoin(COutPoint(txid, 0));
BOOST_CHECK(ret == !entry.IsSpent());
}
if (m_rng.randrange(5) == 0 || coin.IsSpent()) {
Coin newcoin;
newcoin.out.nValue = RandMoney(m_rng);
newcoin.nHeight = 1;
// Infrequently test adding unspendable coins.
if (m_rng.randrange(16) == 0 && coin.IsSpent()) {
newcoin.out.scriptPubKey.assign(1 + m_rng.randbits(6), OP_RETURN);
BOOST_CHECK(newcoin.out.scriptPubKey.IsUnspendable());
added_an_unspendable_entry = true;
} else {
// Random sizes so we can test memory usage accounting
newcoin.out.scriptPubKey.assign(m_rng.randbits(6), 0);
(coin.IsSpent() ? added_an_entry : updated_an_entry) = true;
coin = newcoin;
}
bool is_overwrite = !coin.IsSpent() || m_rng.rand32() & 1;
stack.back()->AddCoin(COutPoint(txid, 0), std::move(newcoin), is_overwrite);
} else {
// Spend the coin.
removed_an_entry = true;
coin.Clear();
BOOST_CHECK(stack.back()->SpendCoin(COutPoint(txid, 0)));
}
}
// Once every 10 iterations, remove a random entry from the cache
if (m_rng.randrange(10) == 0) {
COutPoint out(txids[m_rng.rand32() % txids.size()], 0);
int cacheid = m_rng.rand32() % stack.size();
stack[cacheid]->Uncache(out);
uncached_an_entry |= !stack[cacheid]->HaveCoinInCache(out);
}
// Once every 1000 iterations and at the end, verify the full cache.
if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (const auto& entry : result) {
bool have = stack.back()->HaveCoin(entry.first);
const Coin& coin = stack.back()->AccessCoin(entry.first);
BOOST_CHECK(have == !coin.IsSpent());
BOOST_CHECK(coin == entry.second);
if (coin.IsSpent()) {
missed_an_entry = true;
} else {
BOOST_CHECK(stack.back()->HaveCoinInCache(entry.first));
found_an_entry = true;
}
}
for (const auto& test : stack) {
test->SelfTest();
}
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, flush an intermediate cache
if (stack.size() > 1 && m_rng.randbool() == 0) {
unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
if (fake_best_block) stack[flushIndex]->SetBestBlock(m_rng.rand256());
bool should_erase = m_rng.randrange(4) < 3;
BOOST_CHECK(should_erase ? stack[flushIndex]->Flush() : stack[flushIndex]->Sync());
flushed_without_erase |= !should_erase;
}
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && m_rng.randbool() == 0) {
//Remove the top cache
if (fake_best_block) stack.back()->SetBestBlock(m_rng.rand256());
bool should_erase = m_rng.randrange(4) < 3;
BOOST_CHECK(should_erase ? stack.back()->Flush() : stack.back()->Sync());
flushed_without_erase |= !should_erase;
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
//Add a new cache
CCoinsView* tip = base;
if (stack.size() > 0) {
tip = stack.back().get();
} else {
removed_all_caches = true;
}
stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
if (stack.size() == 4) {
reached_4_caches = true;
}
}
}
}
// Verify coverage.
BOOST_CHECK(removed_all_caches);
BOOST_CHECK(reached_4_caches);
BOOST_CHECK(added_an_entry);
BOOST_CHECK(added_an_unspendable_entry);
BOOST_CHECK(removed_an_entry);
BOOST_CHECK(updated_an_entry);
BOOST_CHECK(found_an_entry);
BOOST_CHECK(missed_an_entry);
BOOST_CHECK(uncached_an_entry);
BOOST_CHECK(flushed_without_erase);
}
}; // struct CacheTest
// Run the above simulation for multiple base types.
BOOST_FIXTURE_TEST_CASE(coins_cache_simulation_test, CacheTest)
{
CCoinsViewTest base{m_rng};
SimulationTest(&base, false);
CCoinsViewDB db_base{{.path = "test", .cache_bytes = 1 << 23, .memory_only = true}, {}};
SimulationTest(&db_base, true);
}
struct UpdateTest : BasicTestingSetup {
// Store of all necessary tx and undo data for next test
typedef std::map<COutPoint, std::tuple<CTransaction,CTxUndo,Coin>> UtxoData;
UtxoData utxoData;
UtxoData::iterator FindRandomFrom(const std::set<COutPoint> &utxoSet) {
assert(utxoSet.size());
auto utxoSetIt = utxoSet.lower_bound(COutPoint(Txid::FromUint256(m_rng.rand256()), 0));
if (utxoSetIt == utxoSet.end()) {
utxoSetIt = utxoSet.begin();
}
auto utxoDataIt = utxoData.find(*utxoSetIt);
assert(utxoDataIt != utxoData.end());
return utxoDataIt;
}
}; // struct UpdateTest
// This test is similar to the previous test
// except the emphasis is on testing the functionality of UpdateCoins
// random txs are created and UpdateCoins is used to update the cache stack
// In particular it is tested that spending a duplicate coinbase tx
// has the expected effect (the other duplicate is overwritten at all cache levels)
BOOST_FIXTURE_TEST_CASE(updatecoins_simulation_test, UpdateTest)
{
SeedRandomForTest(SeedRand::ZEROS);
bool spent_a_duplicate_coinbase = false;
// A simple map to track what we expect the cache stack to represent.
std::map<COutPoint, Coin> result;
// The cache stack.
CCoinsViewTest base{m_rng}; // A CCoinsViewTest at the bottom.
std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(std::make_unique<CCoinsViewCacheTest>(&base)); // Start with one cache.
// Track the txids we've used in various sets
std::set<COutPoint> coinbase_coins;
std::set<COutPoint> disconnected_coins;
std::set<COutPoint> duplicate_coins;
std::set<COutPoint> utxoset;
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
uint32_t randiter = m_rng.rand32();
// 19/20 txs add a new transaction
if (randiter % 20 < 19) {
CMutableTransaction tx;
tx.vin.resize(1);
tx.vout.resize(1);
tx.vout[0].nValue = i; //Keep txs unique unless intended to duplicate
tx.vout[0].scriptPubKey.assign(m_rng.rand32() & 0x3F, 0); // Random sizes so we can test memory usage accounting
const int height{int(m_rng.rand32() >> 1)};
Coin old_coin;
// 2/20 times create a new coinbase
if (randiter % 20 < 2 || coinbase_coins.size() < 10) {
// 1/10 of those times create a duplicate coinbase
if (m_rng.randrange(10) == 0 && coinbase_coins.size()) {
auto utxod = FindRandomFrom(coinbase_coins);
// Reuse the exact same coinbase
tx = CMutableTransaction{std::get<0>(utxod->second)};
// shouldn't be available for reconnection if it's been duplicated
disconnected_coins.erase(utxod->first);
duplicate_coins.insert(utxod->first);
}
else {
coinbase_coins.insert(COutPoint(tx.GetHash(), 0));
}
assert(CTransaction(tx).IsCoinBase());
}
// 17/20 times reconnect previous or add a regular tx
else {
COutPoint prevout;
// 1/20 times reconnect a previously disconnected tx
if (randiter % 20 == 2 && disconnected_coins.size()) {
auto utxod = FindRandomFrom(disconnected_coins);
tx = CMutableTransaction{std::get<0>(utxod->second)};
prevout = tx.vin[0].prevout;
if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevout)) {
disconnected_coins.erase(utxod->first);
continue;
}
// If this tx is already IN the UTXO, then it must be a coinbase, and it must be a duplicate
if (utxoset.count(utxod->first)) {
assert(CTransaction(tx).IsCoinBase());
assert(duplicate_coins.count(utxod->first));
}
disconnected_coins.erase(utxod->first);
}
// 16/20 times create a regular tx
else {
auto utxod = FindRandomFrom(utxoset);
prevout = utxod->first;
// Construct the tx to spend the coins of prevouthash
tx.vin[0].prevout = prevout;
assert(!CTransaction(tx).IsCoinBase());
}
// In this simple test coins only have two states, spent or unspent, save the unspent state to restore
old_coin = result[prevout];
// Update the expected result of prevouthash to know these coins are spent
result[prevout].Clear();
utxoset.erase(prevout);
// The test is designed to ensure spending a duplicate coinbase will work properly
// if that ever happens and not resurrect the previously overwritten coinbase
if (duplicate_coins.count(prevout)) {
spent_a_duplicate_coinbase = true;
}
}
// Update the expected result to know about the new output coins
assert(tx.vout.size() == 1);
const COutPoint outpoint(tx.GetHash(), 0);
result[outpoint] = Coin{tx.vout[0], height, CTransaction{tx}.IsCoinBase()};
// Call UpdateCoins on the top cache
CTxUndo undo;
UpdateCoins(CTransaction{tx}, *(stack.back()), undo, height);
// Update the utxo set for future spends
utxoset.insert(outpoint);
// Track this tx and undo info to use later
utxoData.emplace(outpoint, std::make_tuple(tx,undo,old_coin));
} else if (utxoset.size()) {
//1/20 times undo a previous transaction
auto utxod = FindRandomFrom(utxoset);
CTransaction &tx = std::get<0>(utxod->second);
CTxUndo &undo = std::get<1>(utxod->second);
Coin &orig_coin = std::get<2>(utxod->second);
// Update the expected result
// Remove new outputs
result[utxod->first].Clear();
// If not coinbase restore prevout
if (!tx.IsCoinBase()) {
result[tx.vin[0].prevout] = orig_coin;
}
// Disconnect the tx from the current UTXO
// See code in DisconnectBlock
// remove outputs
BOOST_CHECK(stack.back()->SpendCoin(utxod->first));
// restore inputs
if (!tx.IsCoinBase()) {
const COutPoint &out = tx.vin[0].prevout;
Coin coin = undo.vprevout[0];
ApplyTxInUndo(std::move(coin), *(stack.back()), out);
}
// Store as a candidate for reconnection
disconnected_coins.insert(utxod->first);
// Update the utxoset
utxoset.erase(utxod->first);
if (!tx.IsCoinBase())
utxoset.insert(tx.vin[0].prevout);
}
// Once every 1000 iterations and at the end, verify the full cache.
if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (const auto& entry : result) {
bool have = stack.back()->HaveCoin(entry.first);
const Coin& coin = stack.back()->AccessCoin(entry.first);
BOOST_CHECK(have == !coin.IsSpent());
BOOST_CHECK(coin == entry.second);
}
}
// One every 10 iterations, remove a random entry from the cache
if (utxoset.size() > 1 && m_rng.randrange(30) == 0) {
stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(utxoset)->first);
}
if (disconnected_coins.size() > 1 && m_rng.randrange(30) == 0) {
stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(disconnected_coins)->first);
}
if (duplicate_coins.size() > 1 && m_rng.randrange(30) == 0) {
stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(duplicate_coins)->first);
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, flush an intermediate cache
if (stack.size() > 1 && m_rng.randbool() == 0) {
unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
BOOST_CHECK(stack[flushIndex]->Flush());
}
}
if (m_rng.randrange(100) == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && m_rng.randbool() == 0) {
BOOST_CHECK(stack.back()->Flush());
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
CCoinsView* tip = &base;
if (stack.size() > 0) {
tip = stack.back().get();
}
stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
}
}
}
// Verify coverage.
BOOST_CHECK(spent_a_duplicate_coinbase);
}
BOOST_AUTO_TEST_CASE(ccoins_serialization)
{
// Good example
DataStream ss1{"97f23c835800816115944e077fe7c803cfa57f29b36bf87c1d35"_hex};
Coin cc1;
ss1 >> cc1;
BOOST_CHECK_EQUAL(cc1.fCoinBase, false);
BOOST_CHECK_EQUAL(cc1.nHeight, 203998U);
BOOST_CHECK_EQUAL(cc1.out.nValue, CAmount{60000000000});
BOOST_CHECK_EQUAL(HexStr(cc1.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("816115944e077fe7c803cfa57f29b36bf87c1d35"_hex_u8)))));
// Good example
DataStream ss2{"8ddf77bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex};
Coin cc2;
ss2 >> cc2;
BOOST_CHECK_EQUAL(cc2.fCoinBase, true);
BOOST_CHECK_EQUAL(cc2.nHeight, 120891U);
BOOST_CHECK_EQUAL(cc2.out.nValue, 110397);
BOOST_CHECK_EQUAL(HexStr(cc2.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("8c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex_u8)))));
// Smallest possible example
DataStream ss3{"000006"_hex};
Coin cc3;
ss3 >> cc3;
BOOST_CHECK_EQUAL(cc3.fCoinBase, false);
BOOST_CHECK_EQUAL(cc3.nHeight, 0U);
BOOST_CHECK_EQUAL(cc3.out.nValue, 0);
BOOST_CHECK_EQUAL(cc3.out.scriptPubKey.size(), 0U);
// scriptPubKey that ends beyond the end of the stream
DataStream ss4{"000007"_hex};
try {
Coin cc4;
ss4 >> cc4;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure&) {
}
// Very large scriptPubKey (3*10^9 bytes) past the end of the stream
DataStream tmp{};
uint64_t x = 3000000000ULL;
tmp << VARINT(x);
BOOST_CHECK_EQUAL(HexStr(tmp), "8a95c0bb00");
DataStream ss5{"00008a95c0bb00"_hex};
try {
Coin cc5;
ss5 >> cc5;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure&) {
}
}
const static COutPoint OUTPOINT;
constexpr CAmount SPENT {-1};
constexpr CAmount ABSENT{-2};
constexpr CAmount VALUE1{100};
constexpr CAmount VALUE2{200};
constexpr CAmount VALUE3{300};
struct CoinEntry {
enum class State { CLEAN, DIRTY, FRESH, DIRTY_FRESH };
const CAmount value;
const State state;
constexpr CoinEntry(const CAmount v, const State s) : value{v}, state{s} {}
bool operator==(const CoinEntry& o) const = default;
friend std::ostream& operator<<(std::ostream& os, const CoinEntry& e) { return os << e.value << ", " << e.state; }
constexpr bool IsDirtyFresh() const { return state == State::DIRTY_FRESH; }
constexpr bool IsDirty() const { return state == State::DIRTY || IsDirtyFresh(); }
constexpr bool IsFresh() const { return state == State::FRESH || IsDirtyFresh(); }
static constexpr State ToState(const bool is_dirty, const bool is_fresh) {
if (is_dirty && is_fresh) return State::DIRTY_FRESH;
if (is_dirty) return State::DIRTY;
if (is_fresh) return State::FRESH;
return State::CLEAN;
}
};
using MaybeCoin = std::optional<CoinEntry>;
using CoinOrError = std::variant<MaybeCoin, std::string>;
constexpr MaybeCoin MISSING {std::nullopt};
constexpr MaybeCoin SPENT_DIRTY {{SPENT, CoinEntry::State::DIRTY}};
constexpr MaybeCoin SPENT_DIRTY_FRESH {{SPENT, CoinEntry::State::DIRTY_FRESH}};
constexpr MaybeCoin SPENT_FRESH {{SPENT, CoinEntry::State::FRESH}};
constexpr MaybeCoin SPENT_CLEAN {{SPENT, CoinEntry::State::CLEAN}};
constexpr MaybeCoin VALUE1_DIRTY {{VALUE1, CoinEntry::State::DIRTY}};
constexpr MaybeCoin VALUE1_DIRTY_FRESH{{VALUE1, CoinEntry::State::DIRTY_FRESH}};
constexpr MaybeCoin VALUE1_FRESH {{VALUE1, CoinEntry::State::FRESH}};
constexpr MaybeCoin VALUE1_CLEAN {{VALUE1, CoinEntry::State::CLEAN}};
constexpr MaybeCoin VALUE2_DIRTY {{VALUE2, CoinEntry::State::DIRTY}};
constexpr MaybeCoin VALUE2_DIRTY_FRESH{{VALUE2, CoinEntry::State::DIRTY_FRESH}};
constexpr MaybeCoin VALUE2_FRESH {{VALUE2, CoinEntry::State::FRESH}};
constexpr MaybeCoin VALUE2_CLEAN {{VALUE2, CoinEntry::State::CLEAN}};
constexpr MaybeCoin VALUE3_DIRTY {{VALUE3, CoinEntry::State::DIRTY}};
constexpr MaybeCoin VALUE3_DIRTY_FRESH{{VALUE3, CoinEntry::State::DIRTY_FRESH}};
constexpr auto EX_OVERWRITE_UNSPENT{"Attempted to overwrite an unspent coin (when possible_overwrite is false)"};
constexpr auto EX_FRESH_MISAPPLIED {"FRESH flag misapplied to coin that exists in parent cache"};
static void SetCoinsValue(const CAmount value, Coin& coin)
{
assert(value != ABSENT);
coin.Clear();
assert(coin.IsSpent());
if (value != SPENT) {
coin.out.nValue = value;
coin.nHeight = 1;
assert(!coin.IsSpent());
}
}
static size_t InsertCoinsMapEntry(CCoinsMap& map, CoinsCachePair& sentinel, const CoinEntry& cache_coin)
{
CCoinsCacheEntry entry;
SetCoinsValue(cache_coin.value, entry.coin);
auto [iter, inserted] = map.emplace(OUTPOINT, std::move(entry));
assert(inserted);
if (cache_coin.IsDirty()) CCoinsCacheEntry::SetDirty(*iter, sentinel);
if (cache_coin.IsFresh()) CCoinsCacheEntry::SetFresh(*iter, sentinel);
return iter->second.coin.DynamicMemoryUsage();
}
static MaybeCoin GetCoinsMapEntry(const CCoinsMap& map, const COutPoint& outp = OUTPOINT)
{
if (auto it{map.find(outp)}; it != map.end()) {
return CoinEntry{
it->second.coin.IsSpent() ? SPENT : it->second.coin.out.nValue,
CoinEntry::ToState(it->second.IsDirty(), it->second.IsFresh())};
}
return MISSING;
}
static void WriteCoinsViewEntry(CCoinsView& view, const MaybeCoin& cache_coin)
{
CoinsCachePair sentinel{};
sentinel.second.SelfRef(sentinel);
CCoinsMapMemoryResource resource;
CCoinsMap map{0, CCoinsMap::hasher{}, CCoinsMap::key_equal{}, &resource};
if (cache_coin) InsertCoinsMapEntry(map, sentinel, *cache_coin);
auto cursor{CoinsViewCacheCursor(sentinel, map, /*will_erase=*/true)};
BOOST_CHECK(view.BatchWrite(cursor, {}));
}
class SingleEntryCacheTest
{
public:
SingleEntryCacheTest(const CAmount base_value, const MaybeCoin& cache_coin)
{
auto base_cache_coin{base_value == ABSENT ? MISSING : CoinEntry{base_value, CoinEntry::State::DIRTY}};
WriteCoinsViewEntry(base, base_cache_coin);
if (cache_coin) cache.usage() += InsertCoinsMapEntry(cache.map(), cache.sentinel(), *cache_coin);
}
CCoinsView root;
CCoinsViewCacheTest base{&root};
CCoinsViewCacheTest cache{&base};
};
static void CheckAccessCoin(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
{
SingleEntryCacheTest test{base_value, cache_coin};
auto& coin = test.cache.AccessCoin(OUTPOINT);
BOOST_CHECK_EQUAL(coin.IsSpent(), !test.cache.GetCoin(OUTPOINT));
test.cache.SelfTest(/*sanity_check=*/false);
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
}
BOOST_AUTO_TEST_CASE(ccoins_access)
{
/* Check AccessCoin behavior, requesting a coin from a cache view layered on
* top of a base view, and checking the resulting entry in the cache after
* the access.
* Base Cache Expected
*/
for (auto base_value : {ABSENT, SPENT, VALUE1}) {
CheckAccessCoin(base_value, MISSING, base_value == VALUE1 ? VALUE1_CLEAN : MISSING);
CheckAccessCoin(base_value, SPENT_CLEAN, SPENT_CLEAN );
CheckAccessCoin(base_value, SPENT_FRESH, SPENT_FRESH );
CheckAccessCoin(base_value, SPENT_DIRTY, SPENT_DIRTY );
CheckAccessCoin(base_value, SPENT_DIRTY_FRESH, SPENT_DIRTY_FRESH );
CheckAccessCoin(base_value, VALUE2_CLEAN, VALUE2_CLEAN );
CheckAccessCoin(base_value, VALUE2_FRESH, VALUE2_FRESH );
CheckAccessCoin(base_value, VALUE2_DIRTY, VALUE2_DIRTY );
CheckAccessCoin(base_value, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH);
}
}
static void CheckSpendCoins(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
{
SingleEntryCacheTest test{base_value, cache_coin};
test.cache.SpendCoin(OUTPOINT);
test.cache.SelfTest();
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
}
BOOST_AUTO_TEST_CASE(ccoins_spend)
{
/* Check SpendCoin behavior, requesting a coin from a cache view layered on
* top of a base view, spending, and then checking
* the resulting entry in the cache after the modification.
* Base Cache Expected
*/
for (auto base_value : {ABSENT, SPENT, VALUE1}) {
CheckSpendCoins(base_value, MISSING, base_value == VALUE1 ? SPENT_DIRTY : MISSING);
CheckSpendCoins(base_value, SPENT_CLEAN, SPENT_DIRTY);
CheckSpendCoins(base_value, SPENT_FRESH, MISSING );
CheckSpendCoins(base_value, SPENT_DIRTY, SPENT_DIRTY);
CheckSpendCoins(base_value, SPENT_DIRTY_FRESH, MISSING );
CheckSpendCoins(base_value, VALUE2_CLEAN, SPENT_DIRTY);
CheckSpendCoins(base_value, VALUE2_FRESH, MISSING );
CheckSpendCoins(base_value, VALUE2_DIRTY, SPENT_DIRTY);
CheckSpendCoins(base_value, VALUE2_DIRTY_FRESH, MISSING );
}
}
static void CheckAddCoin(const CAmount base_value, const MaybeCoin& cache_coin, const CAmount modify_value, const CoinOrError& expected, const bool coinbase)
{
SingleEntryCacheTest test{base_value, cache_coin};
bool possible_overwrite{coinbase};
auto add_coin{[&] { test.cache.AddCoin(OUTPOINT, Coin{CTxOut{modify_value, CScript{}}, 1, coinbase}, possible_overwrite); }};
if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
add_coin();
test.cache.SelfTest();
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
} else {
BOOST_CHECK_EXCEPTION(add_coin(), std::logic_error, HasReason(std::get<std::string>(expected)));
}
}
BOOST_AUTO_TEST_CASE(ccoins_add)
{
/* Check AddCoin behavior, requesting a new coin from a cache view,
* writing a modification to the coin, and then checking the resulting
* entry in the cache after the modification. Verify behavior with the
* AddCoin coinbase argument set to false, and to true.
* Base Cache Write Expected Coinbase
*/
for (auto base_value : {ABSENT, SPENT, VALUE1}) {
CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, SPENT_CLEAN, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, SPENT_CLEAN, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, SPENT_FRESH, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, SPENT_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, false);
CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, SPENT_DIRTY_FRESH, VALUE3, VALUE3_DIRTY_FRESH, false);
CheckAddCoin(base_value, SPENT_DIRTY_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
CheckAddCoin(base_value, VALUE2_CLEAN, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_CLEAN, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, VALUE2_FRESH, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
CheckAddCoin(base_value, VALUE2_DIRTY, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_DIRTY, VALUE3, VALUE3_DIRTY, true );
CheckAddCoin(base_value, VALUE2_DIRTY_FRESH, VALUE3, EX_OVERWRITE_UNSPENT, false);
CheckAddCoin(base_value, VALUE2_DIRTY_FRESH, VALUE3, VALUE3_DIRTY_FRESH, true );
}
}
static void CheckWriteCoins(const MaybeCoin& parent, const MaybeCoin& child, const CoinOrError& expected)
{
SingleEntryCacheTest test{ABSENT, parent};
auto write_coins{[&] { WriteCoinsViewEntry(test.cache, child); }};
if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
write_coins();
test.cache.SelfTest(/*sanity_check=*/false);
BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
} else {
BOOST_CHECK_EXCEPTION(write_coins(), std::logic_error, HasReason(std::get<std::string>(expected)));
}
}
BOOST_AUTO_TEST_CASE(ccoins_write)
{
/* Check BatchWrite behavior, flushing one entry from a child cache to a
* parent cache, and checking the resulting entry in the parent cache
* after the write.
* Parent Child Expected
*/
CheckWriteCoins(MISSING, MISSING, MISSING );
CheckWriteCoins(MISSING, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(MISSING, SPENT_DIRTY_FRESH, MISSING );
CheckWriteCoins(MISSING, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(MISSING, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_CLEAN, MISSING, SPENT_CLEAN );
CheckWriteCoins(SPENT_FRESH, MISSING, SPENT_FRESH );
CheckWriteCoins(SPENT_DIRTY, MISSING, SPENT_DIRTY );
CheckWriteCoins(SPENT_DIRTY_FRESH, MISSING, SPENT_DIRTY_FRESH );
CheckWriteCoins(SPENT_CLEAN, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(SPENT_CLEAN, SPENT_DIRTY_FRESH, SPENT_DIRTY );
CheckWriteCoins(SPENT_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(SPENT_FRESH, SPENT_DIRTY_FRESH, MISSING );
CheckWriteCoins(SPENT_DIRTY, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(SPENT_DIRTY, SPENT_DIRTY_FRESH, SPENT_DIRTY );
CheckWriteCoins(SPENT_DIRTY_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(SPENT_DIRTY_FRESH, SPENT_DIRTY_FRESH, MISSING );
CheckWriteCoins(SPENT_CLEAN, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(SPENT_CLEAN, VALUE2_DIRTY_FRESH, VALUE2_DIRTY );
CheckWriteCoins(SPENT_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_FRESH, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_DIRTY, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(SPENT_DIRTY, VALUE2_DIRTY_FRESH, VALUE2_DIRTY );
CheckWriteCoins(SPENT_DIRTY_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(SPENT_DIRTY_FRESH, VALUE2_DIRTY_FRESH, VALUE2_DIRTY_FRESH );
CheckWriteCoins(VALUE1_CLEAN, MISSING, VALUE1_CLEAN );
CheckWriteCoins(VALUE1_FRESH, MISSING, VALUE1_FRESH );
CheckWriteCoins(VALUE1_DIRTY, MISSING, VALUE1_DIRTY );
CheckWriteCoins(VALUE1_DIRTY_FRESH, MISSING, VALUE1_DIRTY_FRESH );
CheckWriteCoins(VALUE1_CLEAN, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(VALUE1_CLEAN, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(VALUE1_FRESH, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY, SPENT_DIRTY, SPENT_DIRTY );
CheckWriteCoins(VALUE1_DIRTY, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY_FRESH, SPENT_DIRTY, MISSING );
CheckWriteCoins(VALUE1_DIRTY_FRESH, SPENT_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_CLEAN, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(VALUE1_CLEAN, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(VALUE1_FRESH, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY, VALUE2_DIRTY, VALUE2_DIRTY );
CheckWriteCoins(VALUE1_DIRTY, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
CheckWriteCoins(VALUE1_DIRTY_FRESH, VALUE2_DIRTY, VALUE2_DIRTY_FRESH );
CheckWriteCoins(VALUE1_DIRTY_FRESH, VALUE2_DIRTY_FRESH, EX_FRESH_MISAPPLIED);
// The checks above omit cases where the child state is not DIRTY, since
// they would be too repetitive (the parent cache is never updated in these
// cases). The loop below covers these cases and makes sure the parent cache
// is always left unchanged.
for (const MaybeCoin& parent : {MISSING,
SPENT_CLEAN, SPENT_DIRTY, SPENT_FRESH, SPENT_DIRTY_FRESH,
VALUE1_CLEAN, VALUE1_DIRTY, VALUE1_FRESH, VALUE1_DIRTY_FRESH}) {
for (const MaybeCoin& child : {MISSING,
SPENT_CLEAN, SPENT_FRESH,
VALUE2_CLEAN, VALUE2_FRESH}) {
auto expected{CoinOrError{parent}}; // TODO test failure cases as well
CheckWriteCoins(parent, child, expected);
}
}
}
struct FlushTest : BasicTestingSetup {
Coin MakeCoin()
{
Coin coin;
coin.out.nValue = m_rng.rand32();
coin.nHeight = m_rng.randrange(4096);
coin.fCoinBase = 0;
return coin;
}
//! For CCoinsViewCache instances backed by either another cache instance or
//! leveldb, test cache behavior and flag state (DIRTY/FRESH) by
//!
//! 1. Adding a random coin to the child-most cache,
//! 2. Flushing all caches (without erasing),
//! 3. Ensure the entry still exists in the cache and has been written to parent,
//! 4. (if `do_erasing_flush`) Flushing the caches again (with erasing),
//! 5. (if `do_erasing_flush`) Ensure the entry has been written to the parent and is no longer in the cache,
//! 6. Spend the coin, ensure it no longer exists in the parent.
//!
void TestFlushBehavior(
CCoinsViewCacheTest* view,
CCoinsViewDB& base,
std::vector<std::unique_ptr<CCoinsViewCacheTest>>& all_caches,
bool do_erasing_flush)
{
size_t cache_usage;
size_t cache_size;
auto flush_all = [this, &all_caches](bool erase) {
// Flush in reverse order to ensure that flushes happen from children up.
for (auto i = all_caches.rbegin(); i != all_caches.rend(); ++i) {
auto& cache = *i;
cache->SanityCheck();
// hashBlock must be filled before flushing to disk; value is
// unimportant here. This is normally done during connect/disconnect block.
cache->SetBestBlock(m_rng.rand256());
erase ? cache->Flush() : cache->Sync();
}
};
Txid txid = Txid::FromUint256(m_rng.rand256());
COutPoint outp = COutPoint(txid, 0);
Coin coin = MakeCoin();
// Ensure the coins views haven't seen this coin before.
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(!view->HaveCoin(outp));
// --- 1. Adding a random coin to the child cache
//
view->AddCoin(outp, Coin(coin), false);
cache_usage = view->DynamicMemoryUsage();
cache_size = view->map().size();
// `base` shouldn't have coin (no flush yet) but `view` should have cached it.
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(view->HaveCoin(outp));
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::DIRTY_FRESH));
// --- 2. Flushing all caches (without erasing)
//
flush_all(/*erase=*/ false);
// CoinsMap usage should be unchanged since we didn't erase anything.
BOOST_CHECK_EQUAL(cache_usage, view->DynamicMemoryUsage());
BOOST_CHECK_EQUAL(cache_size, view->map().size());
// --- 3. Ensuring the entry still exists in the cache and has been written to parent
//
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN)); // State should have been wiped.
// Both views should now have the coin.
BOOST_CHECK(base.HaveCoin(outp));
BOOST_CHECK(view->HaveCoin(outp));
if (do_erasing_flush) {
// --- 4. Flushing the caches again (with erasing)
//
flush_all(/*erase=*/ true);
// Memory does not necessarily go down due to the map using a memory pool
BOOST_TEST(view->DynamicMemoryUsage() <= cache_usage);
// Size of the cache must go down though
BOOST_TEST(view->map().size() < cache_size);
// --- 5. Ensuring the entry is no longer in the cache
//
BOOST_CHECK(!GetCoinsMapEntry(view->map(), outp));
view->AccessCoin(outp);
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN));
}
// Can't overwrite an entry without specifying that an overwrite is
// expected.
BOOST_CHECK_THROW(
view->AddCoin(outp, Coin(coin), /*possible_overwrite=*/ false),
std::logic_error);
// --- 6. Spend the coin.
//
BOOST_CHECK(view->SpendCoin(outp));
// The coin should be in the cache, but spent and marked dirty.
BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), SPENT_DIRTY);
BOOST_CHECK(!view->HaveCoin(outp)); // Coin should be considered spent in `view`.
BOOST_CHECK(base.HaveCoin(outp)); // But coin should still be unspent in `base`.
flush_all(/*erase=*/ false);
// Coin should be considered spent in both views.
BOOST_CHECK(!view->HaveCoin(outp));
BOOST_CHECK(!base.HaveCoin(outp));
// Spent coin should not be spendable.
BOOST_CHECK(!view->SpendCoin(outp));
// --- Bonus check: ensure that a coin added to the base view via one cache
// can be spent by another cache which has never seen it.
//
txid = Txid::FromUint256(m_rng.rand256());
outp = COutPoint(txid, 0);
coin = MakeCoin();
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
all_caches[0]->AddCoin(outp, std::move(coin), false);
all_caches[0]->Sync();
BOOST_CHECK(base.HaveCoin(outp));
BOOST_CHECK(all_caches[0]->HaveCoin(outp));
BOOST_CHECK(!all_caches[1]->HaveCoinInCache(outp));
BOOST_CHECK(all_caches[1]->SpendCoin(outp));
flush_all(/*erase=*/ false);
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
flush_all(/*erase=*/ true); // Erase all cache content.
// --- Bonus check 2: ensure that a FRESH, spent coin is deleted by Sync()
//
txid = Txid::FromUint256(m_rng.rand256());
outp = COutPoint(txid, 0);
coin = MakeCoin();
CAmount coin_val = coin.out.nValue;
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
// Add and spend from same cache without flushing.
all_caches[0]->AddCoin(outp, std::move(coin), false);
// Coin should be FRESH in the cache.
BOOST_CHECK_EQUAL(GetCoinsMapEntry(all_caches[0]->map(), outp), CoinEntry(coin_val, CoinEntry::State::DIRTY_FRESH));
// Base shouldn't have seen coin.
BOOST_CHECK(!base.HaveCoin(outp));
BOOST_CHECK(all_caches[0]->SpendCoin(outp));
all_caches[0]->Sync();
// Ensure there is no sign of the coin after spend/flush.
BOOST_CHECK(!GetCoinsMapEntry(all_caches[0]->map(), outp));
BOOST_CHECK(!all_caches[0]->HaveCoinInCache(outp));
BOOST_CHECK(!base.HaveCoin(outp));
}
}; // struct FlushTest
BOOST_FIXTURE_TEST_CASE(ccoins_flush_behavior, FlushTest)
{
// Create two in-memory caches atop a leveldb view.
CCoinsViewDB base{{.path = "test", .cache_bytes = 1 << 23, .memory_only = true}, {}};
std::vector<std::unique_ptr<CCoinsViewCacheTest>> caches;
caches.push_back(std::make_unique<CCoinsViewCacheTest>(&base));
caches.push_back(std::make_unique<CCoinsViewCacheTest>(caches.back().get()));
for (const auto& view : caches) {
TestFlushBehavior(view.get(), base, caches, /*do_erasing_flush=*/false);
TestFlushBehavior(view.get(), base, caches, /*do_erasing_flush=*/true);
}
}
BOOST_AUTO_TEST_CASE(coins_resource_is_used)
{
CCoinsMapMemoryResource resource;
PoolResourceTester::CheckAllDataAccountedFor(resource);
{
CCoinsMap map{0, CCoinsMap::hasher{}, CCoinsMap::key_equal{}, &resource};
BOOST_TEST(memusage::DynamicUsage(map) >= resource.ChunkSizeBytes());
map.reserve(1000);
// The resource has preallocated a chunk, so we should have space for at several nodes without the need to allocate anything else.
const auto usage_before = memusage::DynamicUsage(map);
COutPoint out_point{};
for (size_t i = 0; i < 1000; ++i) {
out_point.n = i;
map[out_point];
}
BOOST_TEST(usage_before == memusage::DynamicUsage(map));
}
PoolResourceTester::CheckAllDataAccountedFor(resource);
}
BOOST_AUTO_TEST_SUITE_END()