bitcoin/test/functional/test_framework/key.py
Andrew Chow 962ea5c525
Merge bitcoin/bitcoin#28374: test: python cryptography required for BIP 324 functional tests
c534c08710 [test/crypto] Add FSChaCha20Poly1305 AEAD python implementation (stratospher)
c2a458f1c2 [test/crypto] Add FSChaCha20 python implementation (stratospher)
c4ea5f6288 [test/crypto] Add RFC 8439's ChaCha20Poly1305 AEAD (stratospher)
9fc6e0355e [test/crypto] Add Poly1305 python implementation (stratospher)
fec2ca6c9a [test/crypto] Use chacha20_block function in `data_to_num3072` (stratospher)
0cde60da3a [test/crypto] Add ChaCha20 python implementation (stratospher)
69d3f50ab6 [test/crypto] Add HMAC-based Key Derivation Function (HKDF) (stratospher)
08a4a56cbc [test] Move test framework crypto functions to crypto/ (stratospher)

Pull request description:

  split off from #24748 to keep commits related to cryptography and functional test framework changes separate.

  This PR adds python implementation and unit tests for HKDF, ChaCha20, Poly1305, ChaCha20Poly1305 AEAD, FSChaCha20 and FSChaCha20Poly1305 AEAD.

  They're based on cc177ab7bc/bip-0324/reference.py for easy review.

ACKs for top commit:
  sipa:
    utACK c534c08710
  achow101:
    ACK c534c08710
  theStack:
    re-ACK c534c08710

Tree-SHA512: 08a0a422d2937eadcf0edfede37e535e6bc4c2e4b192441bbf9bc26dd3f03fa3388effd22f0527c55af173933d0b50e5b2b3d36f2b62d0aca3098728ef06970e
2023-11-07 16:48:57 -05:00

351 lines
13 KiB
Python

# Copyright (c) 2019-2020 Pieter Wuille
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only secp256k1 elliptic curve protocols implementation
WARNING: This code is slow, uses bad randomness, does not properly protect
keys, and is trivially vulnerable to side channel attacks. Do not use for
anything but tests."""
import csv
import hashlib
import hmac
import os
import random
import unittest
from test_framework.crypto import secp256k1
# Point with no known discrete log.
H_POINT = "50929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0"
# Order of the secp256k1 curve
ORDER = secp256k1.GE.ORDER
def TaggedHash(tag, data):
ss = hashlib.sha256(tag.encode('utf-8')).digest()
ss += ss
ss += data
return hashlib.sha256(ss).digest()
class ECPubKey:
"""A secp256k1 public key"""
def __init__(self):
"""Construct an uninitialized public key"""
self.p = None
def set(self, data):
"""Construct a public key from a serialization in compressed or uncompressed format"""
self.p = secp256k1.GE.from_bytes(data)
self.compressed = len(data) == 33
@property
def is_compressed(self):
return self.compressed
@property
def is_valid(self):
return self.p is not None
def get_bytes(self):
assert self.is_valid
if self.compressed:
return self.p.to_bytes_compressed()
else:
return self.p.to_bytes_uncompressed()
def verify_ecdsa(self, sig, msg, low_s=True):
"""Verify a strictly DER-encoded ECDSA signature against this pubkey.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA verifier algorithm"""
assert self.is_valid
# Extract r and s from the DER formatted signature. Return false for
# any DER encoding errors.
if (sig[1] + 2 != len(sig)):
return False
if (len(sig) < 4):
return False
if (sig[0] != 0x30):
return False
if (sig[2] != 0x02):
return False
rlen = sig[3]
if (len(sig) < 6 + rlen):
return False
if rlen < 1 or rlen > 33:
return False
if sig[4] >= 0x80:
return False
if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)):
return False
r = int.from_bytes(sig[4:4+rlen], 'big')
if (sig[4+rlen] != 0x02):
return False
slen = sig[5+rlen]
if slen < 1 or slen > 33:
return False
if (len(sig) != 6 + rlen + slen):
return False
if sig[6+rlen] >= 0x80:
return False
if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)):
return False
s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big')
# Verify that r and s are within the group order
if r < 1 or s < 1 or r >= ORDER or s >= ORDER:
return False
if low_s and s >= secp256k1.GE.ORDER_HALF:
return False
z = int.from_bytes(msg, 'big')
# Run verifier algorithm on r, s
w = pow(s, -1, ORDER)
R = secp256k1.GE.mul((z * w, secp256k1.G), (r * w, self.p))
if R.infinity or (int(R.x) % ORDER) != r:
return False
return True
def generate_privkey():
"""Generate a valid random 32-byte private key."""
return random.randrange(1, ORDER).to_bytes(32, 'big')
def rfc6979_nonce(key):
"""Compute signing nonce using RFC6979."""
v = bytes([1] * 32)
k = bytes([0] * 32)
k = hmac.new(k, v + b"\x00" + key, 'sha256').digest()
v = hmac.new(k, v, 'sha256').digest()
k = hmac.new(k, v + b"\x01" + key, 'sha256').digest()
v = hmac.new(k, v, 'sha256').digest()
return hmac.new(k, v, 'sha256').digest()
class ECKey:
"""A secp256k1 private key"""
def __init__(self):
self.valid = False
def set(self, secret, compressed):
"""Construct a private key object with given 32-byte secret and compressed flag."""
assert len(secret) == 32
secret = int.from_bytes(secret, 'big')
self.valid = (secret > 0 and secret < ORDER)
if self.valid:
self.secret = secret
self.compressed = compressed
def generate(self, compressed=True):
"""Generate a random private key (compressed or uncompressed)."""
self.set(generate_privkey(), compressed)
def get_bytes(self):
"""Retrieve the 32-byte representation of this key."""
assert self.valid
return self.secret.to_bytes(32, 'big')
@property
def is_valid(self):
return self.valid
@property
def is_compressed(self):
return self.compressed
def get_pubkey(self):
"""Compute an ECPubKey object for this secret key."""
assert self.valid
ret = ECPubKey()
ret.p = self.secret * secp256k1.G
ret.compressed = self.compressed
return ret
def sign_ecdsa(self, msg, low_s=True, rfc6979=False):
"""Construct a DER-encoded ECDSA signature with this key.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA signer algorithm."""
assert self.valid
z = int.from_bytes(msg, 'big')
# Note: no RFC6979 by default, but a simple random nonce (some tests rely on distinct transactions for the same operation)
if rfc6979:
k = int.from_bytes(rfc6979_nonce(self.secret.to_bytes(32, 'big') + msg), 'big')
else:
k = random.randrange(1, ORDER)
R = k * secp256k1.G
r = int(R.x) % ORDER
s = (pow(k, -1, ORDER) * (z + self.secret * r)) % ORDER
if low_s and s > secp256k1.GE.ORDER_HALF:
s = ORDER - s
# Represent in DER format. The byte representations of r and s have
# length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33
# bytes).
rb = r.to_bytes((r.bit_length() + 8) // 8, 'big')
sb = s.to_bytes((s.bit_length() + 8) // 8, 'big')
return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb
def compute_xonly_pubkey(key):
"""Compute an x-only (32 byte) public key from a (32 byte) private key.
This also returns whether the resulting public key was negated.
"""
assert len(key) == 32
x = int.from_bytes(key, 'big')
if x == 0 or x >= ORDER:
return (None, None)
P = x * secp256k1.G
return (P.to_bytes_xonly(), not P.y.is_even())
def tweak_add_privkey(key, tweak):
"""Tweak a private key (after negating it if needed)."""
assert len(key) == 32
assert len(tweak) == 32
x = int.from_bytes(key, 'big')
if x == 0 or x >= ORDER:
return None
if not (x * secp256k1.G).y.is_even():
x = ORDER - x
t = int.from_bytes(tweak, 'big')
if t >= ORDER:
return None
x = (x + t) % ORDER
if x == 0:
return None
return x.to_bytes(32, 'big')
def tweak_add_pubkey(key, tweak):
"""Tweak a public key and return whether the result had to be negated."""
assert len(key) == 32
assert len(tweak) == 32
P = secp256k1.GE.from_bytes_xonly(key)
if P is None:
return None
t = int.from_bytes(tweak, 'big')
if t >= ORDER:
return None
Q = t * secp256k1.G + P
if Q.infinity:
return None
return (Q.to_bytes_xonly(), not Q.y.is_even())
def verify_schnorr(key, sig, msg):
"""Verify a Schnorr signature (see BIP 340).
- key is a 32-byte xonly pubkey (computed using compute_xonly_pubkey).
- sig is a 64-byte Schnorr signature
- msg is a 32-byte message
"""
assert len(key) == 32
assert len(msg) == 32
assert len(sig) == 64
P = secp256k1.GE.from_bytes_xonly(key)
if P is None:
return False
r = int.from_bytes(sig[0:32], 'big')
if r >= secp256k1.FE.SIZE:
return False
s = int.from_bytes(sig[32:64], 'big')
if s >= ORDER:
return False
e = int.from_bytes(TaggedHash("BIP0340/challenge", sig[0:32] + key + msg), 'big') % ORDER
R = secp256k1.GE.mul((s, secp256k1.G), (-e, P))
if R.infinity or not R.y.is_even():
return False
if r != R.x:
return False
return True
def sign_schnorr(key, msg, aux=None, flip_p=False, flip_r=False):
"""Create a Schnorr signature (see BIP 340)."""
if aux is None:
aux = bytes(32)
assert len(key) == 32
assert len(msg) == 32
assert len(aux) == 32
sec = int.from_bytes(key, 'big')
if sec == 0 or sec >= ORDER:
return None
P = sec * secp256k1.G
if P.y.is_even() == flip_p:
sec = ORDER - sec
t = (sec ^ int.from_bytes(TaggedHash("BIP0340/aux", aux), 'big')).to_bytes(32, 'big')
kp = int.from_bytes(TaggedHash("BIP0340/nonce", t + P.to_bytes_xonly() + msg), 'big') % ORDER
assert kp != 0
R = kp * secp256k1.G
k = kp if R.y.is_even() != flip_r else ORDER - kp
e = int.from_bytes(TaggedHash("BIP0340/challenge", R.to_bytes_xonly() + P.to_bytes_xonly() + msg), 'big') % ORDER
return R.to_bytes_xonly() + ((k + e * sec) % ORDER).to_bytes(32, 'big')
class TestFrameworkKey(unittest.TestCase):
def test_ecdsa_and_schnorr(self):
"""Test the Python ECDSA and Schnorr implementations."""
def random_bitflip(sig):
sig = list(sig)
sig[random.randrange(len(sig))] ^= (1 << (random.randrange(8)))
return bytes(sig)
byte_arrays = [generate_privkey() for _ in range(3)] + [v.to_bytes(32, 'big') for v in [0, ORDER - 1, ORDER, 2**256 - 1]]
keys = {}
for privkey_bytes in byte_arrays: # build array of key/pubkey pairs
privkey = ECKey()
privkey.set(privkey_bytes, compressed=True)
if privkey.is_valid:
keys[privkey] = privkey.get_pubkey()
for msg in byte_arrays: # test every combination of message, signing key, verification key
for sign_privkey, _ in keys.items():
sig_ecdsa = sign_privkey.sign_ecdsa(msg)
sig_schnorr = sign_schnorr(sign_privkey.get_bytes(), msg)
for verify_privkey, verify_pubkey in keys.items():
verify_xonly_pubkey = verify_pubkey.get_bytes()[1:]
if verify_privkey == sign_privkey:
self.assertTrue(verify_pubkey.verify_ecdsa(sig_ecdsa, msg))
self.assertTrue(verify_schnorr(verify_xonly_pubkey, sig_schnorr, msg))
sig_ecdsa = random_bitflip(sig_ecdsa) # damaging signature should break things
sig_schnorr = random_bitflip(sig_schnorr)
self.assertFalse(verify_pubkey.verify_ecdsa(sig_ecdsa, msg))
self.assertFalse(verify_schnorr(verify_xonly_pubkey, sig_schnorr, msg))
def test_schnorr_testvectors(self):
"""Implement the BIP340 test vectors (read from bip340_test_vectors.csv)."""
num_tests = 0
vectors_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'bip340_test_vectors.csv')
with open(vectors_file, newline='', encoding='utf8') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
(i_str, seckey_hex, pubkey_hex, aux_rand_hex, msg_hex, sig_hex, result_str, comment) = row
i = int(i_str)
pubkey = bytes.fromhex(pubkey_hex)
msg = bytes.fromhex(msg_hex)
sig = bytes.fromhex(sig_hex)
result = result_str == 'TRUE'
if seckey_hex != '':
seckey = bytes.fromhex(seckey_hex)
pubkey_actual = compute_xonly_pubkey(seckey)[0]
self.assertEqual(pubkey.hex(), pubkey_actual.hex(), "BIP340 test vector %i (%s): pubkey mismatch" % (i, comment))
aux_rand = bytes.fromhex(aux_rand_hex)
try:
sig_actual = sign_schnorr(seckey, msg, aux_rand)
self.assertEqual(sig.hex(), sig_actual.hex(), "BIP340 test vector %i (%s): sig mismatch" % (i, comment))
except RuntimeError as e:
self.fail("BIP340 test vector %i (%s): signing raised exception %s" % (i, comment, e))
result_actual = verify_schnorr(pubkey, sig, msg)
if result:
self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification failed" % (i, comment))
else:
self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification succeeded unexpectedly" % (i, comment))
num_tests += 1
self.assertTrue(num_tests >= 15) # expect at least 15 test vectors