mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-13 05:12:34 -03:00
5eaaa83ac1
There are only a few uses of `insecure_random` outside the tests. This PR replaces uses of insecure_random (and its accompanying global state) in the core code with an FastRandomContext that is automatically seeded on creation. This is meant to be used for inner loops. The FastRandomContext can be in the outer scope, or the class itself, then rand32() is used inside the loop. Useful e.g. for pushing addresses in CNode or the fee rounding, or randomization for coin selection. As a context is created per purpose, thus it gets rid of cross-thread unprotected shared usage of a single set of globals, this should also get rid of the potential race conditions. - I'd say TxMempool::check is not called enough to warrant using a special fast random context, this is switched to GetRand() (open for discussion...) - The use of `insecure_rand` in ConnectThroughProxy has been replaced by an atomic integer counter. The only goal here is to have a different credentials pair for each connection to go on a different Tor circuit, it does not need to be random nor unpredictable. - To avoid having a FastRandomContext on every CNode, the context is passed into PushAddress as appropriate. There remains an insecure_random for test usage in `test_random.h`.
103 lines
4.1 KiB
C++
103 lines
4.1 KiB
C++
// Copyright (c) 2014-2015 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "chain.h"
|
|
#include "test_random.h"
|
|
#include "util.h"
|
|
#include "test/test_bitcoin.h"
|
|
|
|
#include <vector>
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
#define SKIPLIST_LENGTH 300000
|
|
|
|
BOOST_FIXTURE_TEST_SUITE(skiplist_tests, BasicTestingSetup)
|
|
|
|
BOOST_AUTO_TEST_CASE(skiplist_test)
|
|
{
|
|
std::vector<CBlockIndex> vIndex(SKIPLIST_LENGTH);
|
|
|
|
for (int i=0; i<SKIPLIST_LENGTH; i++) {
|
|
vIndex[i].nHeight = i;
|
|
vIndex[i].pprev = (i == 0) ? NULL : &vIndex[i - 1];
|
|
vIndex[i].BuildSkip();
|
|
}
|
|
|
|
for (int i=0; i<SKIPLIST_LENGTH; i++) {
|
|
if (i > 0) {
|
|
BOOST_CHECK(vIndex[i].pskip == &vIndex[vIndex[i].pskip->nHeight]);
|
|
BOOST_CHECK(vIndex[i].pskip->nHeight < i);
|
|
} else {
|
|
BOOST_CHECK(vIndex[i].pskip == NULL);
|
|
}
|
|
}
|
|
|
|
for (int i=0; i < 1000; i++) {
|
|
int from = insecure_rand() % (SKIPLIST_LENGTH - 1);
|
|
int to = insecure_rand() % (from + 1);
|
|
|
|
BOOST_CHECK(vIndex[SKIPLIST_LENGTH - 1].GetAncestor(from) == &vIndex[from]);
|
|
BOOST_CHECK(vIndex[from].GetAncestor(to) == &vIndex[to]);
|
|
BOOST_CHECK(vIndex[from].GetAncestor(0) == &vIndex[0]);
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(getlocator_test)
|
|
{
|
|
// Build a main chain 100000 blocks long.
|
|
std::vector<uint256> vHashMain(100000);
|
|
std::vector<CBlockIndex> vBlocksMain(100000);
|
|
for (unsigned int i=0; i<vBlocksMain.size(); i++) {
|
|
vHashMain[i] = ArithToUint256(i); // Set the hash equal to the height, so we can quickly check the distances.
|
|
vBlocksMain[i].nHeight = i;
|
|
vBlocksMain[i].pprev = i ? &vBlocksMain[i - 1] : NULL;
|
|
vBlocksMain[i].phashBlock = &vHashMain[i];
|
|
vBlocksMain[i].BuildSkip();
|
|
BOOST_CHECK_EQUAL((int)UintToArith256(vBlocksMain[i].GetBlockHash()).GetLow64(), vBlocksMain[i].nHeight);
|
|
BOOST_CHECK(vBlocksMain[i].pprev == NULL || vBlocksMain[i].nHeight == vBlocksMain[i].pprev->nHeight + 1);
|
|
}
|
|
|
|
// Build a branch that splits off at block 49999, 50000 blocks long.
|
|
std::vector<uint256> vHashSide(50000);
|
|
std::vector<CBlockIndex> vBlocksSide(50000);
|
|
for (unsigned int i=0; i<vBlocksSide.size(); i++) {
|
|
vHashSide[i] = ArithToUint256(i + 50000 + (arith_uint256(1) << 128)); // Add 1<<128 to the hashes, so GetLow64() still returns the height.
|
|
vBlocksSide[i].nHeight = i + 50000;
|
|
vBlocksSide[i].pprev = i ? &vBlocksSide[i - 1] : &vBlocksMain[49999];
|
|
vBlocksSide[i].phashBlock = &vHashSide[i];
|
|
vBlocksSide[i].BuildSkip();
|
|
BOOST_CHECK_EQUAL((int)UintToArith256(vBlocksSide[i].GetBlockHash()).GetLow64(), vBlocksSide[i].nHeight);
|
|
BOOST_CHECK(vBlocksSide[i].pprev == NULL || vBlocksSide[i].nHeight == vBlocksSide[i].pprev->nHeight + 1);
|
|
}
|
|
|
|
// Build a CChain for the main branch.
|
|
CChain chain;
|
|
chain.SetTip(&vBlocksMain.back());
|
|
|
|
// Test 100 random starting points for locators.
|
|
for (int n=0; n<100; n++) {
|
|
int r = insecure_rand() % 150000;
|
|
CBlockIndex* tip = (r < 100000) ? &vBlocksMain[r] : &vBlocksSide[r - 100000];
|
|
CBlockLocator locator = chain.GetLocator(tip);
|
|
|
|
// The first result must be the block itself, the last one must be genesis.
|
|
BOOST_CHECK(locator.vHave.front() == tip->GetBlockHash());
|
|
BOOST_CHECK(locator.vHave.back() == vBlocksMain[0].GetBlockHash());
|
|
|
|
// Entries 1 through 11 (inclusive) go back one step each.
|
|
for (unsigned int i = 1; i < 12 && i < locator.vHave.size() - 1; i++) {
|
|
BOOST_CHECK_EQUAL(UintToArith256(locator.vHave[i]).GetLow64(), tip->nHeight - i);
|
|
}
|
|
|
|
// The further ones (excluding the last one) go back with exponential steps.
|
|
unsigned int dist = 2;
|
|
for (unsigned int i = 12; i < locator.vHave.size() - 1; i++) {
|
|
BOOST_CHECK_EQUAL(UintToArith256(locator.vHave[i - 1]).GetLow64() - UintToArith256(locator.vHave[i]).GetLow64(), dist);
|
|
dist *= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|