bitcoin/src/net.h
merge-script ef09f535b7
Merge bitcoin/bitcoin#29984: net: Replace ifname check with IFF_LOOPBACK in Discover
a68fed111b net: Fix misleading comment for Discover (laanwj)
7766dd280d net: Replace ifname check with IFF_LOOPBACK in Discover (laanwj)

Pull request description:

  Checking the interface name is kind of brittle. In the age of network namespaces and containers, there is no reason a loopback interface can't be called differently.

  Check for the `IFF_LOOPBACK` flag to detect loopback interface instead.

  Also remove a misleading comment in Discover's doc comment.

ACKs for top commit:
  sipa:
    utACK a68fed111b
  willcl-ark:
    utACK a68fed111b
  theuni:
    utACK a68fed111b. Satoshi-era brittleness :)

Tree-SHA512: e2d7fc541f40f6a6af08286e7bcb0873ff55debdcd8b38b03f274897b673a6fb51d84d6c7241a02a9567ddf2645f50231d91bb1f55307ba7c6e68196c29b0edf
2024-05-07 10:28:58 +08:00

1660 lines
67 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
#include <bip324.h>
#include <chainparams.h>
#include <common/bloom.h>
#include <compat/compat.h>
#include <consensus/amount.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <i2p.h>
#include <kernel/messagestartchars.h>
#include <net_permissions.h>
#include <netaddress.h>
#include <netbase.h>
#include <netgroup.h>
#include <node/connection_types.h>
#include <node/protocol_version.h>
#include <policy/feerate.h>
#include <protocol.h>
#include <random.h>
#include <span.h>
#include <streams.h>
#include <sync.h>
#include <uint256.h>
#include <util/check.h>
#include <util/sock.h>
#include <util/threadinterrupt.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <deque>
#include <functional>
#include <list>
#include <map>
#include <memory>
#include <optional>
#include <queue>
#include <thread>
#include <unordered_set>
#include <vector>
class AddrMan;
class BanMan;
class CChainParams;
class CNode;
class CScheduler;
struct bilingual_str;
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
static constexpr std::chrono::minutes TIMEOUT_INTERVAL{20};
/** Run the feeler connection loop once every 2 minutes. **/
static constexpr auto FEELER_INTERVAL = 2min;
/** Run the extra block-relay-only connection loop once every 5 minutes. **/
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 5min;
/** Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable). */
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 4 * 1000 * 1000;
/** Maximum length of the user agent string in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
/** Maximum number of automatic outgoing nodes over which we'll relay everything (blocks, tx, addrs, etc) */
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** Maximum number of block-relay-only outgoing connections */
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
/** Maximum number of feeler connections */
static const int MAX_FEELER_CONNECTIONS = 1;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** The maximum number of peer connections to maintain. */
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
/** The default for -maxuploadtarget. 0 = Unlimited */
static const std::string DEFAULT_MAX_UPLOAD_TARGET{"0M"};
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
/** -peertimeout default */
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
/** Number of file descriptors required for message capture **/
static const int NUM_FDS_MESSAGE_CAPTURE = 1;
/** Interval for ASMap Health Check **/
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL{24};
static constexpr bool DEFAULT_FORCEDNSSEED{false};
static constexpr bool DEFAULT_DNSSEED{true};
static constexpr bool DEFAULT_FIXEDSEEDS{true};
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
static constexpr bool DEFAULT_V2_TRANSPORT{true};
typedef int64_t NodeId;
struct AddedNodeParams {
std::string m_added_node;
bool m_use_v2transport;
};
struct AddedNodeInfo {
AddedNodeParams m_params;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
class CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg {
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg&&) = default;
CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default;
// No implicit copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg& msg) = delete;
CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete;
CSerializedNetMsg Copy() const
{
CSerializedNetMsg copy;
copy.data = data;
copy.m_type = m_type;
return copy;
}
std::vector<unsigned char> data;
std::string m_type;
/** Compute total memory usage of this object (own memory + any dynamic memory). */
size_t GetMemoryUsage() const noexcept;
};
/**
* Look up IP addresses from all interfaces on the machine and add them to the
* list of local addresses to self-advertise.
* The loopback interface is skipped.
*/
void Discover();
uint16_t GetListenPort();
enum
{
LOCAL_NONE, // unknown
LOCAL_IF, // address a local interface listens on
LOCAL_BIND, // address explicit bound to
LOCAL_MAPPED, // address reported by UPnP or NAT-PMP
LOCAL_MANUAL, // address explicitly specified (-externalip=)
LOCAL_MAX
};
/** Returns a local address that we should advertise to this peer. */
std::optional<CService> GetLocalAddrForPeer(CNode& node);
bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService& addr);
bool SeenLocal(const CService& addr);
bool IsLocal(const CService& addr);
CService GetLocalAddress(const CNode& peer);
extern bool fDiscover;
extern bool fListen;
/** Subversion as sent to the P2P network in `version` messages */
extern std::string strSubVersion;
struct LocalServiceInfo {
int nScore;
uint16_t nPort;
};
extern GlobalMutex g_maplocalhost_mutex;
extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
extern const std::string NET_MESSAGE_TYPE_OTHER;
using mapMsgTypeSize = std::map</* message type */ std::string, /* total bytes */ uint64_t>;
class CNodeStats
{
public:
NodeId nodeid;
std::chrono::seconds m_last_send;
std::chrono::seconds m_last_recv;
std::chrono::seconds m_last_tx_time;
std::chrono::seconds m_last_block_time;
std::chrono::seconds m_connected;
std::string m_addr_name;
int nVersion;
std::string cleanSubVer;
bool fInbound;
// We requested high bandwidth connection to peer
bool m_bip152_highbandwidth_to;
// Peer requested high bandwidth connection
bool m_bip152_highbandwidth_from;
int m_starting_height;
uint64_t nSendBytes;
mapMsgTypeSize mapSendBytesPerMsgType;
uint64_t nRecvBytes;
mapMsgTypeSize mapRecvBytesPerMsgType;
NetPermissionFlags m_permission_flags;
std::chrono::microseconds m_last_ping_time;
std::chrono::microseconds m_min_ping_time;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
// Network the peer connected through
Network m_network;
uint32_t m_mapped_as;
ConnectionType m_conn_type;
/** Transport protocol type. */
TransportProtocolType m_transport_type;
/** BIP324 session id string in hex, if any. */
std::string m_session_id;
};
/** Transport protocol agnostic message container.
* Ideally it should only contain receive time, payload,
* type and size.
*/
class CNetMessage
{
public:
DataStream m_recv; //!< received message data
std::chrono::microseconds m_time{0}; //!< time of message receipt
uint32_t m_message_size{0}; //!< size of the payload
uint32_t m_raw_message_size{0}; //!< used wire size of the message (including header/checksum)
std::string m_type;
explicit CNetMessage(DataStream&& recv_in) : m_recv(std::move(recv_in)) {}
// Only one CNetMessage object will exist for the same message on either
// the receive or processing queue. For performance reasons we therefore
// delete the copy constructor and assignment operator to avoid the
// possibility of copying CNetMessage objects.
CNetMessage(CNetMessage&&) = default;
CNetMessage(const CNetMessage&) = delete;
CNetMessage& operator=(CNetMessage&&) = default;
CNetMessage& operator=(const CNetMessage&) = delete;
};
/** The Transport converts one connection's sent messages to wire bytes, and received bytes back. */
class Transport {
public:
virtual ~Transport() {}
struct Info
{
TransportProtocolType transport_type;
std::optional<uint256> session_id;
};
/** Retrieve information about this transport. */
virtual Info GetInfo() const noexcept = 0;
// 1. Receiver side functions, for decoding bytes received on the wire into transport protocol
// agnostic CNetMessage (message type & payload) objects.
/** Returns true if the current message is complete (so GetReceivedMessage can be called). */
virtual bool ReceivedMessageComplete() const = 0;
/** Feed wire bytes to the transport.
*
* @return false if some bytes were invalid, in which case the transport can't be used anymore.
*
* Consumed bytes are chopped off the front of msg_bytes.
*/
virtual bool ReceivedBytes(Span<const uint8_t>& msg_bytes) = 0;
/** Retrieve a completed message from transport.
*
* This can only be called when ReceivedMessageComplete() is true.
*
* If reject_message=true is returned the message itself is invalid, but (other than false
* returned by ReceivedBytes) the transport is not in an inconsistent state.
*/
virtual CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) = 0;
// 2. Sending side functions, for converting messages into bytes to be sent over the wire.
/** Set the next message to send.
*
* If no message can currently be set (perhaps because the previous one is not yet done being
* sent), returns false, and msg will be unmodified. Otherwise msg is enqueued (and
* possibly moved-from) and true is returned.
*/
virtual bool SetMessageToSend(CSerializedNetMsg& msg) noexcept = 0;
/** Return type for GetBytesToSend, consisting of:
* - Span<const uint8_t> to_send: span of bytes to be sent over the wire (possibly empty).
* - bool more: whether there will be more bytes to be sent after the ones in to_send are
* all sent (as signaled by MarkBytesSent()).
* - const std::string& m_type: message type on behalf of which this is being sent
* ("" for bytes that are not on behalf of any message).
*/
using BytesToSend = std::tuple<
Span<const uint8_t> /*to_send*/,
bool /*more*/,
const std::string& /*m_type*/
>;
/** Get bytes to send on the wire, if any, along with other information about it.
*
* As a const function, it does not modify the transport's observable state, and is thus safe
* to be called multiple times.
*
* @param[in] have_next_message If true, the "more" return value reports whether more will
* be sendable after a SetMessageToSend call. It is set by the caller when they know
* they have another message ready to send, and only care about what happens
* after that. The have_next_message argument only affects this "more" return value
* and nothing else.
*
* Effectively, there are three possible outcomes about whether there are more bytes
* to send:
* - Yes: the transport itself has more bytes to send later. For example, for
* V1Transport this happens during the sending of the header of a
* message, when there is a non-empty payload that follows.
* - No: the transport itself has no more bytes to send, but will have bytes to
* send if handed a message through SetMessageToSend. In V1Transport this
* happens when sending the payload of a message.
* - Blocked: the transport itself has no more bytes to send, and is also incapable
* of sending anything more at all now, if it were handed another
* message to send. This occurs in V2Transport before the handshake is
* complete, as the encryption ciphers are not set up for sending
* messages before that point.
*
* The boolean 'more' is true for Yes, false for Blocked, and have_next_message
* controls what is returned for No.
*
* @return a BytesToSend object. The to_send member returned acts as a stream which is only
* ever appended to. This means that with the exception of MarkBytesSent (which pops
* bytes off the front of later to_sends), operations on the transport can only append
* to what is being returned. Also note that m_type and to_send refer to data that is
* internal to the transport, and calling any non-const function on this object may
* invalidate them.
*/
virtual BytesToSend GetBytesToSend(bool have_next_message) const noexcept = 0;
/** Report how many bytes returned by the last GetBytesToSend() have been sent.
*
* bytes_sent cannot exceed to_send.size() of the last GetBytesToSend() result.
*
* If bytes_sent=0, this call has no effect.
*/
virtual void MarkBytesSent(size_t bytes_sent) noexcept = 0;
/** Return the memory usage of this transport attributable to buffered data to send. */
virtual size_t GetSendMemoryUsage() const noexcept = 0;
// 3. Miscellaneous functions.
/** Whether upon disconnections, a reconnect with V1 is warranted. */
virtual bool ShouldReconnectV1() const noexcept = 0;
};
class V1Transport final : public Transport
{
private:
const MessageStartChars m_magic_bytes;
const NodeId m_node_id; // Only for logging
mutable Mutex m_recv_mutex; //!< Lock for receive state
mutable CHash256 hasher GUARDED_BY(m_recv_mutex);
mutable uint256 data_hash GUARDED_BY(m_recv_mutex);
bool in_data GUARDED_BY(m_recv_mutex); // parsing header (false) or data (true)
DataStream hdrbuf GUARDED_BY(m_recv_mutex){}; // partially received header
CMessageHeader hdr GUARDED_BY(m_recv_mutex); // complete header
DataStream vRecv GUARDED_BY(m_recv_mutex){}; // received message data
unsigned int nHdrPos GUARDED_BY(m_recv_mutex);
unsigned int nDataPos GUARDED_BY(m_recv_mutex);
const uint256& GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
int readHeader(Span<const uint8_t> msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
int readData(Span<const uint8_t> msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex) {
AssertLockHeld(m_recv_mutex);
vRecv.clear();
hdrbuf.clear();
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
data_hash.SetNull();
hasher.Reset();
}
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
{
AssertLockHeld(m_recv_mutex);
if (!in_data) return false;
return hdr.nMessageSize == nDataPos;
}
/** Lock for sending state. */
mutable Mutex m_send_mutex;
/** The header of the message currently being sent. */
std::vector<uint8_t> m_header_to_send GUARDED_BY(m_send_mutex);
/** The data of the message currently being sent. */
CSerializedNetMsg m_message_to_send GUARDED_BY(m_send_mutex);
/** Whether we're currently sending header bytes or message bytes. */
bool m_sending_header GUARDED_BY(m_send_mutex) {false};
/** How many bytes have been sent so far (from m_header_to_send, or from m_message_to_send.data). */
size_t m_bytes_sent GUARDED_BY(m_send_mutex) {0};
public:
explicit V1Transport(const NodeId node_id) noexcept;
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
{
AssertLockNotHeld(m_recv_mutex);
return WITH_LOCK(m_recv_mutex, return CompleteInternal());
}
Info GetInfo() const noexcept override;
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
{
AssertLockNotHeld(m_recv_mutex);
LOCK(m_recv_mutex);
int ret = in_data ? readData(msg_bytes) : readHeader(msg_bytes);
if (ret < 0) {
Reset();
} else {
msg_bytes = msg_bytes.subspan(ret);
}
return ret >= 0;
}
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
bool ShouldReconnectV1() const noexcept override { return false; }
};
class V2Transport final : public Transport
{
private:
/** Contents of the version packet to send. BIP324 stipulates that senders should leave this
* empty, and receivers should ignore it. Future extensions can change what is sent as long as
* an empty version packet contents is interpreted as no extensions supported. */
static constexpr std::array<std::byte, 0> VERSION_CONTENTS = {};
/** The length of the V1 prefix to match bytes initially received by responders with to
* determine if their peer is speaking V1 or V2. */
static constexpr size_t V1_PREFIX_LEN = 16;
// The sender side and receiver side of V2Transport are state machines that are transitioned
// through, based on what has been received. The receive state corresponds to the contents of,
// and bytes received to, the receive buffer. The send state controls what can be appended to
// the send buffer and what can be sent from it.
/** State type that defines the current contents of the receive buffer and/or how the next
* received bytes added to it will be interpreted.
*
* Diagram:
*
* start(responder)
* |
* | start(initiator) /---------\
* | | | |
* v v v |
* KEY_MAYBE_V1 -> KEY -> GARB_GARBTERM -> VERSION -> APP -> APP_READY
* |
* \-------> V1
*/
enum class RecvState : uint8_t {
/** (Responder only) either v2 public key or v1 header.
*
* This is the initial state for responders, before data has been received to distinguish
* v1 from v2 connections. When that happens, the state becomes either KEY (for v2) or V1
* (for v1). */
KEY_MAYBE_V1,
/** Public key.
*
* This is the initial state for initiators, during which the other side's public key is
* received. When that information arrives, the ciphers get initialized and the state
* becomes GARB_GARBTERM. */
KEY,
/** Garbage and garbage terminator.
*
* Whenever a byte is received, the last 16 bytes are compared with the expected garbage
* terminator. When that happens, the state becomes VERSION. If no matching terminator is
* received in 4111 bytes (4095 for the maximum garbage length, and 16 bytes for the
* terminator), the connection aborts. */
GARB_GARBTERM,
/** Version packet.
*
* A packet is received, and decrypted/verified. If that fails, the connection aborts. The
* first received packet in this state (whether it's a decoy or not) is expected to
* authenticate the garbage received during the GARB_GARBTERM state as associated
* authenticated data (AAD). The first non-decoy packet in this state is interpreted as
* version negotiation (currently, that means ignoring the contents, but it can be used for
* negotiating future extensions), and afterwards the state becomes APP. */
VERSION,
/** Application packet.
*
* A packet is received, and decrypted/verified. If that succeeds, the state becomes
* APP_READY and the decrypted contents is kept in m_recv_decode_buffer until it is
* retrieved as a message by GetMessage(). */
APP,
/** Nothing (an application packet is available for GetMessage()).
*
* Nothing can be received in this state. When the message is retrieved by GetMessage,
* the state becomes APP again. */
APP_READY,
/** Nothing (this transport is using v1 fallback).
*
* All receive operations are redirected to m_v1_fallback. */
V1,
};
/** State type that controls the sender side.
*
* Diagram:
*
* start(responder)
* |
* | start(initiator)
* | |
* v v
* MAYBE_V1 -> AWAITING_KEY -> READY
* |
* \-----> V1
*/
enum class SendState : uint8_t {
/** (Responder only) Not sending until v1 or v2 is detected.
*
* This is the initial state for responders. The send buffer is empty.
* When the receiver determines whether this
* is a V1 or V2 connection, the sender state becomes AWAITING_KEY (for v2) or V1 (for v1).
*/
MAYBE_V1,
/** Waiting for the other side's public key.
*
* This is the initial state for initiators. The public key and garbage is sent out. When
* the receiver receives the other side's public key and transitions to GARB_GARBTERM, the
* sender state becomes READY. */
AWAITING_KEY,
/** Normal sending state.
*
* In this state, the ciphers are initialized, so packets can be sent. When this state is
* entered, the garbage terminator and version packet are appended to the send buffer (in
* addition to the key and garbage which may still be there). In this state a message can be
* provided if the send buffer is empty. */
READY,
/** This transport is using v1 fallback.
*
* All send operations are redirected to m_v1_fallback. */
V1,
};
/** Cipher state. */
BIP324Cipher m_cipher;
/** Whether we are the initiator side. */
const bool m_initiating;
/** NodeId (for debug logging). */
const NodeId m_nodeid;
/** Encapsulate a V1Transport to fall back to. */
V1Transport m_v1_fallback;
/** Lock for receiver-side fields. */
mutable Mutex m_recv_mutex ACQUIRED_BEFORE(m_send_mutex);
/** In {VERSION, APP}, the decrypted packet length, if m_recv_buffer.size() >=
* BIP324Cipher::LENGTH_LEN. Unspecified otherwise. */
uint32_t m_recv_len GUARDED_BY(m_recv_mutex) {0};
/** Receive buffer; meaning is determined by m_recv_state. */
std::vector<uint8_t> m_recv_buffer GUARDED_BY(m_recv_mutex);
/** AAD expected in next received packet (currently used only for garbage). */
std::vector<uint8_t> m_recv_aad GUARDED_BY(m_recv_mutex);
/** Buffer to put decrypted contents in, for converting to CNetMessage. */
std::vector<uint8_t> m_recv_decode_buffer GUARDED_BY(m_recv_mutex);
/** Current receiver state. */
RecvState m_recv_state GUARDED_BY(m_recv_mutex);
/** Lock for sending-side fields. If both sending and receiving fields are accessed,
* m_recv_mutex must be acquired before m_send_mutex. */
mutable Mutex m_send_mutex ACQUIRED_AFTER(m_recv_mutex);
/** The send buffer; meaning is determined by m_send_state. */
std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex);
/** How many bytes from the send buffer have been sent so far. */
uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0};
/** The garbage sent, or to be sent (MAYBE_V1 and AWAITING_KEY state only). */
std::vector<uint8_t> m_send_garbage GUARDED_BY(m_send_mutex);
/** Type of the message being sent. */
std::string m_send_type GUARDED_BY(m_send_mutex);
/** Current sender state. */
SendState m_send_state GUARDED_BY(m_send_mutex);
/** Whether we've sent at least 24 bytes (which would trigger disconnect for V1 peers). */
bool m_sent_v1_header_worth GUARDED_BY(m_send_mutex) {false};
/** Change the receive state. */
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Change the send state. */
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
/** Given a packet's contents, find the message type (if valid), and strip it from contents. */
static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept;
/** Determine how many received bytes can be processed in one go (not allowed in V1 state). */
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Put our public key + garbage in the send buffer. */
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state. */
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY state. */
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
/** Process bytes in m_recv_buffer, while in GARB_GARBTERM state. */
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Process bytes in m_recv_buffer, while in VERSION/APP state. */
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
public:
static constexpr uint32_t MAX_GARBAGE_LEN = 4095;
/** Construct a V2 transport with securely generated random keys.
*
* @param[in] nodeid the node's NodeId (only for debug log output).
* @param[in] initiating whether we are the initiator side.
*/
V2Transport(NodeId nodeid, bool initiating) noexcept;
/** Construct a V2 transport with specified keys and garbage (test use only). */
V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept;
// Receive side functions.
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex, !m_send_mutex);
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
// Send side functions.
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
// Miscellaneous functions.
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex, !m_send_mutex);
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
};
struct CNodeOptions
{
NetPermissionFlags permission_flags = NetPermissionFlags::None;
std::unique_ptr<i2p::sam::Session> i2p_sam_session = nullptr;
bool prefer_evict = false;
size_t recv_flood_size{DEFAULT_MAXRECEIVEBUFFER * 1000};
bool use_v2transport = false;
};
/** Information about a peer */
class CNode
{
public:
/** Transport serializer/deserializer. The receive side functions are only called under cs_vRecv, while
* the sending side functions are only called under cs_vSend. */
const std::unique_ptr<Transport> m_transport;
const NetPermissionFlags m_permission_flags;
/**
* Socket used for communication with the node.
* May not own a Sock object (after `CloseSocketDisconnect()` or during tests).
* `shared_ptr` (instead of `unique_ptr`) is used to avoid premature close of
* the underlying file descriptor by one thread while another thread is
* poll(2)-ing it for activity.
* @see https://github.com/bitcoin/bitcoin/issues/21744 for details.
*/
std::shared_ptr<Sock> m_sock GUARDED_BY(m_sock_mutex);
/** Sum of GetMemoryUsage of all vSendMsg entries. */
size_t m_send_memusage GUARDED_BY(cs_vSend){0};
/** Total number of bytes sent on the wire to this peer. */
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
/** Messages still to be fed to m_transport->SetMessageToSend. */
std::deque<CSerializedNetMsg> vSendMsg GUARDED_BY(cs_vSend);
Mutex cs_vSend;
Mutex m_sock_mutex;
Mutex cs_vRecv;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<std::chrono::seconds> m_last_send{0s};
std::atomic<std::chrono::seconds> m_last_recv{0s};
//! Unix epoch time at peer connection
const std::chrono::seconds m_connected;
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
const std::string m_addr_name;
/** The pszDest argument provided to ConnectNode(). Only used for reconnections. */
const std::string m_dest;
//! Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
const bool m_inbound_onion;
std::atomic<int> nVersion{0};
Mutex m_subver_mutex;
/**
* cleanSubVer is a sanitized string of the user agent byte array we read
* from the wire. This cleaned string can safely be logged or displayed.
*/
std::string cleanSubVer GUARDED_BY(m_subver_mutex){};
const bool m_prefer_evict{false}; // This peer is preferred for eviction.
bool HasPermission(NetPermissionFlags permission) const {
return NetPermissions::HasFlag(m_permission_flags, permission);
}
/** fSuccessfullyConnected is set to true on receiving VERACK from the peer. */
std::atomic_bool fSuccessfullyConnected{false};
// Setting fDisconnect to true will cause the node to be disconnected the
// next time DisconnectNodes() runs
std::atomic_bool fDisconnect{false};
CSemaphoreGrant grantOutbound;
std::atomic<int> nRefCount{0};
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
const ConnectionType m_conn_type;
/** Move all messages from the received queue to the processing queue. */
void MarkReceivedMsgsForProcessing()
EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex);
/** Poll the next message from the processing queue of this connection.
*
* Returns std::nullopt if the processing queue is empty, or a pair
* consisting of the message and a bool that indicates if the processing
* queue has more entries. */
std::optional<std::pair<CNetMessage, bool>> PollMessage()
EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex);
/** Account for the total size of a sent message in the per msg type connection stats. */
void AccountForSentBytes(const std::string& msg_type, size_t sent_bytes)
EXCLUSIVE_LOCKS_REQUIRED(cs_vSend)
{
mapSendBytesPerMsgType[msg_type] += sent_bytes;
}
bool IsOutboundOrBlockRelayConn() const {
switch (m_conn_type) {
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
return true;
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::ADDR_FETCH:
case ConnectionType::FEELER:
return false;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool IsFullOutboundConn() const {
return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY;
}
bool IsManualConn() const {
return m_conn_type == ConnectionType::MANUAL;
}
bool IsManualOrFullOutboundConn() const
{
switch (m_conn_type) {
case ConnectionType::INBOUND:
case ConnectionType::FEELER:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH:
return false;
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::MANUAL:
return true;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool IsBlockOnlyConn() const {
return m_conn_type == ConnectionType::BLOCK_RELAY;
}
bool IsFeelerConn() const {
return m_conn_type == ConnectionType::FEELER;
}
bool IsAddrFetchConn() const {
return m_conn_type == ConnectionType::ADDR_FETCH;
}
bool IsInboundConn() const {
return m_conn_type == ConnectionType::INBOUND;
}
bool ExpectServicesFromConn() const {
switch (m_conn_type) {
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::FEELER:
return false;
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH:
return true;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
/**
* Get network the peer connected through.
*
* Returns Network::NET_ONION for *inbound* onion connections,
* and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly
* because it doesn't detect the former, and it's not the responsibility of
* the CNetAddr class to know the actual network a peer is connected through.
*
* @return network the peer connected through.
*/
Network ConnectedThroughNetwork() const;
/** Whether this peer connected through a privacy network. */
[[nodiscard]] bool IsConnectedThroughPrivacyNet() const;
// We selected peer as (compact blocks) high-bandwidth peer (BIP152)
std::atomic<bool> m_bip152_highbandwidth_to{false};
// Peer selected us as (compact blocks) high-bandwidth peer (BIP152)
std::atomic<bool> m_bip152_highbandwidth_from{false};
/** Whether this peer provides all services that we want. Used for eviction decisions */
std::atomic_bool m_has_all_wanted_services{false};
/** Whether we should relay transactions to this peer. This only changes
* from false to true. It will never change back to false. */
std::atomic_bool m_relays_txs{false};
/** Whether this peer has loaded a bloom filter. Used only in inbound
* eviction logic. */
std::atomic_bool m_bloom_filter_loaded{false};
/** UNIX epoch time of the last block received from this peer that we had
* not yet seen (e.g. not already received from another peer), that passed
* preliminary validity checks and was saved to disk, even if we don't
* connect the block or it eventually fails connection. Used as an inbound
* peer eviction criterium in CConnman::AttemptToEvictConnection. */
std::atomic<std::chrono::seconds> m_last_block_time{0s};
/** UNIX epoch time of the last transaction received from this peer that we
* had not yet seen (e.g. not already received from another peer) and that
* was accepted into our mempool. Used as an inbound peer eviction criterium
* in CConnman::AttemptToEvictConnection. */
std::atomic<std::chrono::seconds> m_last_tx_time{0s};
/** Last measured round-trip time. Used only for RPC/GUI stats/debugging.*/
std::atomic<std::chrono::microseconds> m_last_ping_time{0us};
/** Lowest measured round-trip time. Used as an inbound peer eviction
* criterium in CConnman::AttemptToEvictConnection. */
std::atomic<std::chrono::microseconds> m_min_ping_time{std::chrono::microseconds::max()};
CNode(NodeId id,
std::shared_ptr<Sock> sock,
const CAddress& addrIn,
uint64_t nKeyedNetGroupIn,
uint64_t nLocalHostNonceIn,
const CAddress& addrBindIn,
const std::string& addrNameIn,
ConnectionType conn_type_in,
bool inbound_onion,
CNodeOptions&& node_opts = {});
CNode(const CNode&) = delete;
CNode& operator=(const CNode&) = delete;
NodeId GetId() const {
return id;
}
uint64_t GetLocalNonce() const {
return nLocalHostNonce;
}
int GetRefCount() const
{
assert(nRefCount >= 0);
return nRefCount;
}
/**
* Receive bytes from the buffer and deserialize them into messages.
*
* @param[in] msg_bytes The raw data
* @param[out] complete Set True if at least one message has been
* deserialized and is ready to be processed
* @return True if the peer should stay connected,
* False if the peer should be disconnected from.
*/
bool ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv);
void SetCommonVersion(int greatest_common_version)
{
Assume(m_greatest_common_version == INIT_PROTO_VERSION);
m_greatest_common_version = greatest_common_version;
}
int GetCommonVersion() const
{
return m_greatest_common_version;
}
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex);
//! May not be called more than once
void SetAddrLocal(const CService& addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex);
CNode* AddRef()
{
nRefCount++;
return this;
}
void Release()
{
nRefCount--;
}
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex);
void CopyStats(CNodeStats& stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex, !m_addr_local_mutex, !cs_vSend, !cs_vRecv);
std::string ConnectionTypeAsString() const { return ::ConnectionTypeAsString(m_conn_type); }
/** A ping-pong round trip has completed successfully. Update latest and minimum ping times. */
void PongReceived(std::chrono::microseconds ping_time) {
m_last_ping_time = ping_time;
m_min_ping_time = std::min(m_min_ping_time.load(), ping_time);
}
private:
const NodeId id;
const uint64_t nLocalHostNonce;
std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION};
const size_t m_recv_flood_size;
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
Mutex m_msg_process_queue_mutex;
std::list<CNetMessage> m_msg_process_queue GUARDED_BY(m_msg_process_queue_mutex);
size_t m_msg_process_queue_size GUARDED_BY(m_msg_process_queue_mutex){0};
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(m_addr_local_mutex);
mutable Mutex m_addr_local_mutex;
mapMsgTypeSize mapSendBytesPerMsgType GUARDED_BY(cs_vSend);
mapMsgTypeSize mapRecvBytesPerMsgType GUARDED_BY(cs_vRecv);
/**
* If an I2P session is created per connection (for outbound transient I2P
* connections) then it is stored here so that it can be destroyed when the
* socket is closed. I2P sessions involve a data/transport socket (in `m_sock`)
* and a control socket (in `m_i2p_sam_session`). For transient sessions, once
* the data socket is closed, the control socket is not going to be used anymore
* and is just taking up resources. So better close it as soon as `m_sock` is
* closed.
* Otherwise this unique_ptr is empty.
*/
std::unique_ptr<i2p::sam::Session> m_i2p_sam_session GUARDED_BY(m_sock_mutex);
};
/**
* Interface for message handling
*/
class NetEventsInterface
{
public:
/** Mutex for anything that is only accessed via the msg processing thread */
static Mutex g_msgproc_mutex;
/** Initialize a peer (setup state, queue any initial messages) */
virtual void InitializeNode(CNode& node, ServiceFlags our_services) = 0;
/** Handle removal of a peer (clear state) */
virtual void FinalizeNode(const CNode& node) = 0;
/**
* Callback to determine whether the given set of service flags are sufficient
* for a peer to be "relevant".
*/
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const = 0;
/**
* Process protocol messages received from a given node
*
* @param[in] pnode The node which we have received messages from.
* @param[in] interrupt Interrupt condition for processing threads
* @return True if there is more work to be done
*/
virtual bool ProcessMessages(CNode* pnode, std::atomic<bool>& interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) = 0;
/**
* Send queued protocol messages to a given node.
*
* @param[in] pnode The node which we are sending messages to.
* @return True if there is more work to be done
*/
virtual bool SendMessages(CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived classes.
* If that restriction is no longer desired, this should be made public and virtual.
*/
~NetEventsInterface() = default;
};
class CConnman
{
public:
struct Options
{
ServiceFlags nLocalServices = NODE_NONE;
int m_max_automatic_connections = 0;
CClientUIInterface* uiInterface = nullptr;
NetEventsInterface* m_msgproc = nullptr;
BanMan* m_banman = nullptr;
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundLimit = 0;
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
std::vector<std::string> vSeedNodes;
std::vector<NetWhitelistPermissions> vWhitelistedRangeIncoming;
std::vector<NetWhitelistPermissions> vWhitelistedRangeOutgoing;
std::vector<NetWhitebindPermissions> vWhiteBinds;
std::vector<CService> vBinds;
std::vector<CService> onion_binds;
/// True if the user did not specify -bind= or -whitebind= and thus
/// we should bind on `0.0.0.0` (IPv4) and `::` (IPv6).
bool bind_on_any;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
bool m_i2p_accept_incoming;
bool whitelist_forcerelay = DEFAULT_WHITELISTFORCERELAY;
bool whitelist_relay = DEFAULT_WHITELISTRELAY;
};
void Init(const Options& connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex, !m_total_bytes_sent_mutex)
{
AssertLockNotHeld(m_total_bytes_sent_mutex);
nLocalServices = connOptions.nLocalServices;
m_max_automatic_connections = connOptions.m_max_automatic_connections;
m_max_outbound_full_relay = std::min(MAX_OUTBOUND_FULL_RELAY_CONNECTIONS, m_max_automatic_connections);
m_max_outbound_block_relay = std::min(MAX_BLOCK_RELAY_ONLY_CONNECTIONS, m_max_automatic_connections - m_max_outbound_full_relay);
m_max_automatic_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + m_max_feeler;
m_max_inbound = std::max(0, m_max_automatic_connections - m_max_automatic_outbound);
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
m_client_interface = connOptions.uiInterface;
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
m_peer_connect_timeout = std::chrono::seconds{connOptions.m_peer_connect_timeout};
{
LOCK(m_total_bytes_sent_mutex);
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
vWhitelistedRangeIncoming = connOptions.vWhitelistedRangeIncoming;
vWhitelistedRangeOutgoing = connOptions.vWhitelistedRangeOutgoing;
{
LOCK(m_added_nodes_mutex);
// Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
// peer doesn't support it or immediately disconnects us for another reason.
const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
for (const std::string& added_node : connOptions.m_added_nodes) {
m_added_node_params.push_back({added_node, use_v2transport});
}
}
m_onion_binds = connOptions.onion_binds;
whitelist_forcerelay = connOptions.whitelist_forcerelay;
whitelist_relay = connOptions.whitelist_relay;
}
CConnman(uint64_t seed0, uint64_t seed1, AddrMan& addrman, const NetGroupManager& netgroupman,
const CChainParams& params, bool network_active = true);
~CConnman();
bool Start(CScheduler& scheduler, const Options& options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !m_added_nodes_mutex, !m_addr_fetches_mutex, !mutexMsgProc);
void StopThreads();
void StopNodes();
void Stop()
{
StopThreads();
StopNodes();
};
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
bool GetNetworkActive() const { return fNetworkActive; };
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
void SetNetworkActive(bool active);
void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char* strDest, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex);
bool CheckIncomingNonce(uint64_t nonce);
void ASMapHealthCheck();
// alias for thread safety annotations only, not defined
RecursiveMutex& GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex);
bool ForNode(NodeId id, std::function<bool(CNode* pnode)> func);
void PushMessage(CNode* pnode, CSerializedNetMsg&& msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
using NodeFn = std::function<void(CNode*)>;
void ForEachNode(const NodeFn& func)
{
LOCK(m_nodes_mutex);
for (auto&& node : m_nodes) {
if (NodeFullyConnected(node))
func(node);
}
};
void ForEachNode(const NodeFn& func) const
{
LOCK(m_nodes_mutex);
for (auto&& node : m_nodes) {
if (NodeFullyConnected(node))
func(node);
}
};
// Addrman functions
/**
* Return all or many randomly selected addresses, optionally by network.
*
* @param[in] max_addresses Maximum number of addresses to return (0 = all).
* @param[in] max_pct Maximum percentage of addresses to return (0 = all).
* @param[in] network Select only addresses of this network (nullopt = all).
* @param[in] filtered Select only addresses that are considered high quality (false = all).
*/
std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered = true) const;
/**
* Cache is used to minimize topology leaks, so it should
* be used for all non-trusted calls, for example, p2p.
* A non-malicious call (from RPC or a peer with addr permission) should
* call the function without a parameter to avoid using the cache.
*/
std::vector<CAddress> GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct);
// This allows temporarily exceeding m_max_outbound_full_relay, with the goal of finding
// a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer() const;
void StartExtraBlockRelayPeers();
// Count the number of full-relay peer we have.
int GetFullOutboundConnCount() const;
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraFullOutboundCount() const;
// Count the number of block-relay-only peers we have over our limit.
int GetExtraBlockRelayCount() const;
bool AddNode(const AddedNodeParams& add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex);
bool RemoveAddedNode(const std::string& node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex);
bool AddedNodesContain(const CAddress& addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex);
std::vector<AddedNodeInfo> GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex);
/**
* Attempts to open a connection. Currently only used from tests.
*
* @param[in] address Address of node to try connecting to
* @param[in] conn_type ConnectionType::OUTBOUND, ConnectionType::BLOCK_RELAY,
* ConnectionType::ADDR_FETCH or ConnectionType::FEELER
* @param[in] use_v2transport Set to true if node attempts to connect using BIP 324 v2 transport protocol.
* @return bool Returns false if there are no available
* slots for this connection:
* - conn_type not a supported ConnectionType
* - Max total outbound connection capacity filled
* - Max connection capacity for type is filled
*/
bool AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex);
size_t GetNodeCount(ConnectionDirection) const;
uint32_t GetMappedAS(const CNetAddr& addr) const;
void GetNodeStats(std::vector<CNodeStats>& vstats) const;
bool DisconnectNode(const std::string& node);
bool DisconnectNode(const CSubNet& subnet);
bool DisconnectNode(const CNetAddr& addr);
bool DisconnectNode(NodeId id);
//! Used to convey which local services we are offering peers during node
//! connection.
//!
//! The data returned by this is used in CNode construction,
//! which is used to advertise which services we are offering
//! that peer during `net_processing.cpp:PushNodeVersion()`.
ServiceFlags GetLocalServices() const;
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
std::chrono::seconds GetMaxOutboundTimeframe() const;
//! check if the outbound target is reached
//! if param historicalBlockServingLimit is set true, the function will
//! response true if the limit for serving historical blocks has been reached
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
//! response the bytes left in the current max outbound cycle
//! in case of no limit, it will always response 0
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
uint64_t GetTotalBytesRecv() const;
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
/** Return true if we should disconnect the peer for failing an inactivity check. */
bool ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const;
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex);
private:
struct ListenSocket {
public:
std::shared_ptr<Sock> sock;
inline void AddSocketPermissionFlags(NetPermissionFlags& flags) const { NetPermissions::AddFlag(flags, m_permissions); }
ListenSocket(std::shared_ptr<Sock> sock_, NetPermissionFlags permissions_)
: sock{sock_}, m_permissions{permissions_}
{
}
private:
NetPermissionFlags m_permissions;
};
//! returns the time left in the current max outbound cycle
//! in case of no limit, it will always return 0
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex);
bool BindListenPort(const CService& bindAddr, bilingual_str& strError, NetPermissionFlags permissions);
bool Bind(const CService& addr, unsigned int flags, NetPermissionFlags permissions);
bool InitBinds(const Options& options);
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex, !m_unused_i2p_sessions_mutex, !m_reconnections_mutex);
void AddAddrFetch(const std::string& strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex);
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_unused_i2p_sessions_mutex);
void ThreadOpenConnections(std::vector<std::string> connect) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_added_nodes_mutex, !m_nodes_mutex, !m_unused_i2p_sessions_mutex, !m_reconnections_mutex);
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
void ThreadI2PAcceptIncoming();
void AcceptConnection(const ListenSocket& hListenSocket);
/**
* Create a `CNode` object from a socket that has just been accepted and add the node to
* the `m_nodes` member.
* @param[in] sock Connected socket to communicate with the peer.
* @param[in] permission_flags The peer's permissions.
* @param[in] addr_bind The address and port at our side of the connection.
* @param[in] addr The address and port at the peer's side of the connection.
*/
void CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
NetPermissionFlags permission_flags,
const CAddress& addr_bind,
const CAddress& addr);
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex, !m_nodes_mutex);
void NotifyNumConnectionsChanged();
/** Return true if the peer is inactive and should be disconnected. */
bool InactivityCheck(const CNode& node) const;
/**
* Generate a collection of sockets to check for IO readiness.
* @param[in] nodes Select from these nodes' sockets.
* @return sockets to check for readiness
*/
Sock::EventsPerSock GenerateWaitSockets(Span<CNode* const> nodes);
/**
* Check connected and listening sockets for IO readiness and process them accordingly.
*/
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !mutexMsgProc);
/**
* Do the read/write for connected sockets that are ready for IO.
* @param[in] nodes Nodes to process. The socket of each node is checked against `what`.
* @param[in] events_per_sock Sockets that are ready for IO.
*/
void SocketHandlerConnected(const std::vector<CNode*>& nodes,
const Sock::EventsPerSock& events_per_sock)
EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !mutexMsgProc);
/**
* Accept incoming connections, one from each read-ready listening socket.
* @param[in] events_per_sock Sockets that are ready for IO.
*/
void SocketHandlerListening(const Sock::EventsPerSock& events_per_sock);
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !mutexMsgProc, !m_nodes_mutex, !m_reconnections_mutex);
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_nodes_mutex);
uint64_t CalculateKeyedNetGroup(const CAddress& ad) const;
CNode* FindNode(const CNetAddr& ip);
CNode* FindNode(const std::string& addrName);
CNode* FindNode(const CService& addr);
/**
* Determine whether we're already connected to a given address, in order to
* avoid initiating duplicate connections.
*/
bool AlreadyConnectedToAddress(const CAddress& addr);
bool AttemptToEvictConnection();
CNode* ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex);
void AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const;
void DeleteNode(CNode* pnode);
NodeId GetNewNodeId();
/** (Try to) send data from node's vSendMsg. Returns (bytes_sent, data_left). */
std::pair<size_t, bool> SocketSendData(CNode& node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend);
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
/**
Return reachable networks for which we have no addresses in addrman and therefore
may require loading fixed seeds.
*/
std::unordered_set<Network> GetReachableEmptyNetworks() const;
/**
* Return vector of current BLOCK_RELAY peers.
*/
std::vector<CAddress> GetCurrentBlockRelayOnlyConns() const;
/**
* Search for a "preferred" network, a reachable network to which we
* currently don't have any OUTBOUND_FULL_RELAY or MANUAL connections.
* There needs to be at least one address in AddrMan for a preferred
* network to be picked.
*
* @param[out] network Preferred network, if found.
*
* @return bool Whether a preferred network was found.
*/
bool MaybePickPreferredNetwork(std::optional<Network>& network);
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode* pnode);
uint16_t GetDefaultPort(Network net) const;
uint16_t GetDefaultPort(const std::string& addr) const;
// Network usage totals
mutable Mutex m_total_bytes_sent_mutex;
std::atomic<uint64_t> nTotalBytesRecv{0};
uint64_t nTotalBytesSent GUARDED_BY(m_total_bytes_sent_mutex) {0};
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(m_total_bytes_sent_mutex) {0};
std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(m_total_bytes_sent_mutex) {0};
uint64_t nMaxOutboundLimit GUARDED_BY(m_total_bytes_sent_mutex);
// P2P timeout in seconds
std::chrono::seconds m_peer_connect_timeout;
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
std::vector<NetWhitelistPermissions> vWhitelistedRangeIncoming;
// Whitelisted ranges for outgoing connections.
std::vector<NetWhitelistPermissions> vWhitelistedRangeOutgoing;
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
AddrMan& addrman;
const NetGroupManager& m_netgroupman;
std::deque<std::string> m_addr_fetches GUARDED_BY(m_addr_fetches_mutex);
Mutex m_addr_fetches_mutex;
// connection string and whether to use v2 p2p
std::vector<AddedNodeParams> m_added_node_params GUARDED_BY(m_added_nodes_mutex);
mutable Mutex m_added_nodes_mutex;
std::vector<CNode*> m_nodes GUARDED_BY(m_nodes_mutex);
std::list<CNode*> m_nodes_disconnected;
mutable RecursiveMutex m_nodes_mutex;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
// Stores number of full-tx connections (outbound and manual) per network
std::array<unsigned int, Network::NET_MAX> m_network_conn_counts GUARDED_BY(m_nodes_mutex) = {};
/**
* Cache responses to addr requests to minimize privacy leak.
* Attack example: scraping addrs in real-time may allow an attacker
* to infer new connections of the victim by detecting new records
* with fresh timestamps (per self-announcement).
*/
struct CachedAddrResponse {
std::vector<CAddress> m_addrs_response_cache;
std::chrono::microseconds m_cache_entry_expiration{0};
};
/**
* Addr responses stored in different caches
* per (network, local socket) prevent cross-network node identification.
* If a node for example is multi-homed under Tor and IPv6,
* a single cache (or no cache at all) would let an attacker
* to easily detect that it is the same node by comparing responses.
* Indexing by local socket prevents leakage when a node has multiple
* listening addresses on the same network.
*
* The used memory equals to 1000 CAddress records (or around 40 bytes) per
* distinct Network (up to 5) we have/had an inbound peer from,
* resulting in at most ~196 KB. Every separate local socket may
* add up to ~196 KB extra.
*/
std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
/**
* Services this node offers.
*
* This data is replicated in each Peer instance we create.
*
* This data is not marked const, but after being set it should not
* change.
*
* \sa Peer::our_services
*/
ServiceFlags nLocalServices;
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
/**
* Maximum number of automatic connections permitted, excluding manual
* connections but including inbounds. May be changed by the user and is
* potentially limited by the operating system (number of file descriptors).
*/
int m_max_automatic_connections;
/*
* Maximum number of peers by connection type. Might vary from defaults
* based on -maxconnections init value.
*/
// How many full-relay (tx, block, addr) outbound peers we want
int m_max_outbound_full_relay;
// How many block-relay only outbound peers we want
// We do not relay tx or addr messages with these peers
int m_max_outbound_block_relay;
int m_max_addnode{MAX_ADDNODE_CONNECTIONS};
int m_max_feeler{MAX_FEELER_CONNECTIONS};
int m_max_automatic_outbound;
int m_max_inbound;
bool m_use_addrman_outgoing;
CClientUIInterface* m_client_interface;
NetEventsInterface* m_msgproc;
/** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
BanMan* m_banman;
/**
* Addresses that were saved during the previous clean shutdown. We'll
* attempt to make block-relay-only connections to them.
*/
std::vector<CAddress> m_anchors;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
/** flag for waking the message processor. */
bool fMsgProcWake GUARDED_BY(mutexMsgProc);
std::condition_variable condMsgProc;
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
/**
* This is signaled when network activity should cease.
* A pointer to it is saved in `m_i2p_sam_session`, so make sure that
* the lifetime of `interruptNet` is not shorter than
* the lifetime of `m_i2p_sam_session`.
*/
CThreadInterrupt interruptNet;
/**
* I2P SAM session.
* Used to accept incoming and make outgoing I2P connections from a persistent
* address.
*/
std::unique_ptr<i2p::sam::Session> m_i2p_sam_session;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadMessageHandler;
std::thread threadI2PAcceptIncoming;
/** flag for deciding to connect to an extra outbound peer,
* in excess of m_max_outbound_full_relay
* This takes the place of a feeler connection */
std::atomic_bool m_try_another_outbound_peer;
/** flag for initiating extra block-relay-only peer connections.
* this should only be enabled after initial chain sync has occurred,
* as these connections are intended to be short-lived and low-bandwidth.
*/
std::atomic_bool m_start_extra_block_relay_peers{false};
/**
* A vector of -bind=<address>:<port>=onion arguments each of which is
* an address and port that are designated for incoming Tor connections.
*/
std::vector<CService> m_onion_binds;
/**
* flag for adding 'forcerelay' permission to whitelisted inbound
* and manual peers with default permissions.
*/
bool whitelist_forcerelay;
/**
* flag for adding 'relay' permission to whitelisted inbound
* and manual peers with default permissions.
*/
bool whitelist_relay;
/**
* Mutex protecting m_i2p_sam_sessions.
*/
Mutex m_unused_i2p_sessions_mutex;
/**
* A pool of created I2P SAM transient sessions that should be used instead
* of creating new ones in order to reduce the load on the I2P network.
* Creating a session in I2P is not cheap, thus if this is not empty, then
* pick an entry from it instead of creating a new session. If connecting to
* a host fails, then the created session is put to this pool for reuse.
*/
std::queue<std::unique_ptr<i2p::sam::Session>> m_unused_i2p_sessions GUARDED_BY(m_unused_i2p_sessions_mutex);
/**
* Mutex protecting m_reconnections.
*/
Mutex m_reconnections_mutex;
/** Struct for entries in m_reconnections. */
struct ReconnectionInfo
{
CAddress addr_connect;
CSemaphoreGrant grant;
std::string destination;
ConnectionType conn_type;
bool use_v2transport;
};
/**
* List of reconnections we have to make.
*/
std::list<ReconnectionInfo> m_reconnections GUARDED_BY(m_reconnections_mutex);
/** Attempt reconnections, if m_reconnections non-empty. */
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex, !m_unused_i2p_sessions_mutex);
/**
* Cap on the size of `m_unused_i2p_sessions`, to ensure it does not
* unexpectedly use too much memory.
*/
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE{10};
/**
* RAII helper to atomically create a copy of `m_nodes` and add a reference
* to each of the nodes. The nodes are released when this object is destroyed.
*/
class NodesSnapshot
{
public:
explicit NodesSnapshot(const CConnman& connman, bool shuffle)
{
{
LOCK(connman.m_nodes_mutex);
m_nodes_copy = connman.m_nodes;
for (auto& node : m_nodes_copy) {
node->AddRef();
}
}
if (shuffle) {
Shuffle(m_nodes_copy.begin(), m_nodes_copy.end(), FastRandomContext{});
}
}
~NodesSnapshot()
{
for (auto& node : m_nodes_copy) {
node->Release();
}
}
const std::vector<CNode*>& Nodes() const
{
return m_nodes_copy;
}
private:
std::vector<CNode*> m_nodes_copy;
};
const CChainParams& m_params;
friend struct ConnmanTestMsg;
};
/** Defaults to `CaptureMessageToFile()`, but can be overridden by unit tests. */
extern std::function<void(const CAddress& addr,
const std::string& msg_type,
Span<const unsigned char> data,
bool is_incoming)>
CaptureMessage;
#endif // BITCOIN_NET_H