bitcoin/test/functional/wallet_txn_clone.py
Hennadii Stepanov a0473442d1
scripted-diff: Add __file__ argument to BitcoinTestFramework.init()
-BEGIN VERIFY SCRIPT-
sed -i -e 's/\s*().main\s*()/(__file__).main()/' $(git ls-files test/functional/*.py)
sed -i -e 's/def __init__(self)/def __init__(self, test_file)/' test/functional/test_framework/test_framework.py
-END VERIFY SCRIPT-
2024-07-16 22:06:47 +01:00

152 lines
6.4 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2014-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the wallet accounts properly when there are cloned transactions with malleated scriptsigs."""
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
)
from test_framework.messages import (
COIN,
tx_from_hex,
)
class TxnMallTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 3
self.supports_cli = False
def skip_test_if_missing_module(self):
self.skip_if_no_wallet()
def add_options(self, parser):
self.add_wallet_options(parser)
parser.add_argument("--mineblock", dest="mine_block", default=False, action="store_true",
help="Test double-spend of 1-confirmed transaction")
parser.add_argument("--segwit", dest="segwit", default=False, action="store_true",
help="Test behaviour with SegWit txn (which should fail)")
def setup_network(self):
# Start with split network:
super().setup_network()
self.disconnect_nodes(1, 2)
def spend_utxo(self, utxo, outputs):
inputs = [utxo]
tx = self.nodes[0].createrawtransaction(inputs, outputs)
tx = self.nodes[0].fundrawtransaction(tx)
tx = self.nodes[0].signrawtransactionwithwallet(tx['hex'])
return self.nodes[0].sendrawtransaction(tx['hex'])
def run_test(self):
if self.options.segwit:
output_type = "p2sh-segwit"
else:
output_type = "legacy"
# All nodes should start with 1,250 BTC:
starting_balance = 1250
for i in range(3):
assert_equal(self.nodes[i].getbalance(), starting_balance)
self.nodes[0].settxfee(.001)
node0_address1 = self.nodes[0].getnewaddress(address_type=output_type)
node0_utxo1 = self.create_outpoints(self.nodes[0], outputs=[{node0_address1: 1219}])[0]
node0_tx1 = self.nodes[0].gettransaction(node0_utxo1['txid'])
self.nodes[0].lockunspent(False, [node0_utxo1])
node0_address2 = self.nodes[0].getnewaddress(address_type=output_type)
node0_utxo2 = self.create_outpoints(self.nodes[0], outputs=[{node0_address2: 29}])[0]
node0_tx2 = self.nodes[0].gettransaction(node0_utxo2['txid'])
assert_equal(self.nodes[0].getbalance(),
starting_balance + node0_tx1["fee"] + node0_tx2["fee"])
# Coins are sent to node1_address
node1_address = self.nodes[1].getnewaddress()
# Send tx1, and another transaction tx2 that won't be cloned
txid1 = self.spend_utxo(node0_utxo1, {node1_address: 40})
txid2 = self.spend_utxo(node0_utxo2, {node1_address: 20})
# Construct a clone of tx1, to be malleated
rawtx1 = self.nodes[0].getrawtransaction(txid1, 1)
clone_inputs = [{"txid": rawtx1["vin"][0]["txid"], "vout": rawtx1["vin"][0]["vout"], "sequence": rawtx1["vin"][0]["sequence"]}]
clone_outputs = {rawtx1["vout"][0]["scriptPubKey"]["address"]: rawtx1["vout"][0]["value"],
rawtx1["vout"][1]["scriptPubKey"]["address"]: rawtx1["vout"][1]["value"]}
clone_locktime = rawtx1["locktime"]
clone_raw = self.nodes[0].createrawtransaction(clone_inputs, clone_outputs, clone_locktime)
# createrawtransaction randomizes the order of its outputs, so swap them if necessary.
clone_tx = tx_from_hex(clone_raw)
if (rawtx1["vout"][0]["value"] == 40 and clone_tx.vout[0].nValue != 40*COIN or rawtx1["vout"][0]["value"] != 40 and clone_tx.vout[0].nValue == 40*COIN):
(clone_tx.vout[0], clone_tx.vout[1]) = (clone_tx.vout[1], clone_tx.vout[0])
# Use a different signature hash type to sign. This creates an equivalent but malleated clone.
# Don't send the clone anywhere yet
tx1_clone = self.nodes[0].signrawtransactionwithwallet(clone_tx.serialize().hex(), None, "ALL|ANYONECANPAY")
assert_equal(tx1_clone["complete"], True)
# Have node0 mine a block, if requested:
if (self.options.mine_block):
self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_blocks(self.nodes[0:2]))
tx1 = self.nodes[0].gettransaction(txid1)
tx2 = self.nodes[0].gettransaction(txid2)
# Node0's balance should be starting balance, plus 50BTC for another
# matured block, minus tx1 and tx2 amounts, and minus transaction fees:
expected = starting_balance + node0_tx1["fee"] + node0_tx2["fee"]
if self.options.mine_block:
expected += 50
expected += tx1["amount"] + tx1["fee"]
expected += tx2["amount"] + tx2["fee"]
assert_equal(self.nodes[0].getbalance(), expected)
if self.options.mine_block:
assert_equal(tx1["confirmations"], 1)
assert_equal(tx2["confirmations"], 1)
else:
assert_equal(tx1["confirmations"], 0)
assert_equal(tx2["confirmations"], 0)
# Send clone and its parent to miner
self.nodes[2].sendrawtransaction(node0_tx1["hex"])
txid1_clone = self.nodes[2].sendrawtransaction(tx1_clone["hex"])
if self.options.segwit:
assert_equal(txid1, txid1_clone)
return
# ... mine a block...
self.generate(self.nodes[2], 1, sync_fun=self.no_op)
# Reconnect the split network, and sync chain:
self.connect_nodes(1, 2)
self.nodes[2].sendrawtransaction(node0_tx2["hex"])
self.nodes[2].sendrawtransaction(tx2["hex"])
self.generate(self.nodes[2], 1) # Mine another block to make sure we sync
# Re-fetch transaction info:
tx1 = self.nodes[0].gettransaction(txid1)
tx1_clone = self.nodes[0].gettransaction(txid1_clone)
tx2 = self.nodes[0].gettransaction(txid2)
# Verify expected confirmations
assert_equal(tx1["confirmations"], -2)
assert_equal(tx1_clone["confirmations"], 2)
assert_equal(tx2["confirmations"], 1)
# Check node0's total balance; should be same as before the clone, + 100 BTC for 2 matured,
# less possible orphaned matured subsidy
expected += 100
if (self.options.mine_block):
expected -= 50
assert_equal(self.nodes[0].getbalance(), expected)
if __name__ == '__main__':
TxnMallTest(__file__).main()