mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-04-29 23:09:44 -04:00
726cbee955
doc: correct typos (fanquake)9fdfb73ca8
doc: fix typos (Afanti) Pull request description: Includes #31253. Includes https://github.com/bitcoin/bitcoin/pull/31239#pullrequestreview-2425008603. Fixes remaining lint output. ACKs for top commit: l0rinc: ACK726cbee955
rkrux: crACK726cbee955
tdb3: ACK726cbee955
Tree-SHA512: 51978343f11fb5f0c6b824d92dbfc9999952373a9f790ab79ef8750f920f1c020c092ca874c9e39f478d12d85cdadcfd8c63dda0cbb02745bc55fda28d371e4c
2637 lines
134 KiB
C++
2637 lines
134 KiB
C++
// Copyright (c) 2019-present The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_SCRIPT_MINISCRIPT_H
|
|
#define BITCOIN_SCRIPT_MINISCRIPT_H
|
|
|
|
#include <algorithm>
|
|
#include <compare>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <set>
|
|
#include <stdexcept>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <consensus/consensus.h>
|
|
#include <policy/policy.h>
|
|
#include <script/interpreter.h>
|
|
#include <script/parsing.h>
|
|
#include <script/script.h>
|
|
#include <serialize.h>
|
|
#include <span.h>
|
|
#include <util/check.h>
|
|
#include <util/strencodings.h>
|
|
#include <util/string.h>
|
|
#include <util/vector.h>
|
|
|
|
namespace miniscript {
|
|
|
|
/** This type encapsulates the miniscript type system properties.
|
|
*
|
|
* Every miniscript expression is one of 4 basic types, and additionally has
|
|
* a number of boolean type properties.
|
|
*
|
|
* The basic types are:
|
|
* - "B" Base:
|
|
* - Takes its inputs from the top of the stack.
|
|
* - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack.
|
|
* - When dissatisfied, pushes a 0 onto the stack.
|
|
* - This is used for most expressions, and required for the top level one.
|
|
* - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY.
|
|
* - "V" Verify:
|
|
* - Takes its inputs from the top of the stack.
|
|
* - When satisfied, pushes nothing.
|
|
* - Cannot be dissatisfied.
|
|
* - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode
|
|
* of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY,
|
|
* OP_NUMEQUAL and OP_EQUAL), or by combining a V fragment under some conditions.
|
|
* - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY
|
|
* - "K" Key:
|
|
* - Takes its inputs from the top of the stack.
|
|
* - Becomes a B when followed by OP_CHECKSIG.
|
|
* - Always pushes a public key onto the stack, for which a signature is to be
|
|
* provided to satisfy the expression.
|
|
* - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY
|
|
* - "W" Wrapped:
|
|
* - Takes its input from one below the top of the stack.
|
|
* - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below.
|
|
* - When dissatisfied, pushes 0 op top of the stack or one below.
|
|
* - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK".
|
|
* - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG
|
|
*
|
|
* There are type properties that help reasoning about correctness:
|
|
* - "z" Zero-arg:
|
|
* - Is known to always consume exactly 0 stack elements.
|
|
* - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY
|
|
* - "o" One-arg:
|
|
* - Is known to always consume exactly 1 stack element.
|
|
* - Conflicts with property 'z'
|
|
* - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL
|
|
* - "n" Nonzero:
|
|
* - For every way this expression can be satisfied, a satisfaction exists that never needs
|
|
* a zero top stack element.
|
|
* - Conflicts with property 'z' and with type 'W'.
|
|
* - "d" Dissatisfiable:
|
|
* - There is an easy way to construct a dissatisfaction for this expression.
|
|
* - Conflicts with type 'V'.
|
|
* - "u" Unit:
|
|
* - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero).
|
|
* - Conflicts with type 'V'.
|
|
*
|
|
* Additional type properties help reasoning about nonmalleability:
|
|
* - "e" Expression:
|
|
* - This implies property 'd', but the dissatisfaction is nonmalleable.
|
|
* - This generally requires 'e' for all subexpressions which are invoked for that
|
|
* dissatisfaction, and property 'f' for the unexecuted subexpressions in that case.
|
|
* - Conflicts with type 'V'.
|
|
* - "f" Forced:
|
|
* - Dissatisfactions (if any) for this expression always involve at least one signature.
|
|
* - Is always true for type 'V'.
|
|
* - "s" Safe:
|
|
* - Satisfactions for this expression always involve at least one signature.
|
|
* - "m" Nonmalleable:
|
|
* - For every way this expression can be satisfied (which may be none),
|
|
* a nonmalleable satisfaction exists.
|
|
* - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions
|
|
* which are dissatisfied when satisfying the parent.
|
|
*
|
|
* One type property is an implementation detail:
|
|
* - "x" Expensive verify:
|
|
* - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG.
|
|
* - Not having this property means that it can be converted to a V at no cost (by switching to the
|
|
* -VERIFY version of the last opcode).
|
|
*
|
|
* Five more type properties for representing timelock information. Spend paths
|
|
* in miniscripts containing conflicting timelocks and heightlocks cannot be spent together.
|
|
* This helps users detect if miniscript does not match the semantic behaviour the
|
|
* user expects.
|
|
* - "g" Whether the branch contains a relative time timelock
|
|
* - "h" Whether the branch contains a relative height timelock
|
|
* - "i" Whether the branch contains an absolute time timelock
|
|
* - "j" Whether the branch contains an absolute height timelock
|
|
* - "k"
|
|
* - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock
|
|
* of the same type.
|
|
* - If the miniscript does not have the "k" property, the miniscript template will not match
|
|
* the user expectation of the corresponding spending policy.
|
|
* For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also
|
|
* valid in places where an X, a Y, a Z, an XY, ... is expected.
|
|
*/
|
|
class Type {
|
|
//! Internal bitmap of properties (see ""_mst operator for details).
|
|
uint32_t m_flags;
|
|
|
|
//! Internal constructor.
|
|
explicit constexpr Type(uint32_t flags) noexcept : m_flags(flags) {}
|
|
|
|
public:
|
|
//! Construction function used by the ""_mst operator.
|
|
static consteval Type Make(uint32_t flags) noexcept { return Type(flags); }
|
|
|
|
//! Compute the type with the union of properties.
|
|
constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
|
|
|
|
//! Compute the type with the intersection of properties.
|
|
constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
|
|
|
|
//! Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
|
|
constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
|
|
|
|
//! Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
|
|
constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
|
|
|
|
//! Equality operator.
|
|
constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
|
|
|
|
//! The empty type if x is false, itself otherwise.
|
|
constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
|
|
};
|
|
|
|
//! Literal operator to construct Type objects.
|
|
inline consteval Type operator""_mst(const char* c, size_t l)
|
|
{
|
|
Type typ{Type::Make(0)};
|
|
|
|
for (const char *p = c; p < c + l; p++) {
|
|
typ = typ | Type::Make(
|
|
*p == 'B' ? 1 << 0 : // Base type
|
|
*p == 'V' ? 1 << 1 : // Verify type
|
|
*p == 'K' ? 1 << 2 : // Key type
|
|
*p == 'W' ? 1 << 3 : // Wrapped type
|
|
*p == 'z' ? 1 << 4 : // Zero-arg property
|
|
*p == 'o' ? 1 << 5 : // One-arg property
|
|
*p == 'n' ? 1 << 6 : // Nonzero arg property
|
|
*p == 'd' ? 1 << 7 : // Dissatisfiable property
|
|
*p == 'u' ? 1 << 8 : // Unit property
|
|
*p == 'e' ? 1 << 9 : // Expression property
|
|
*p == 'f' ? 1 << 10 : // Forced property
|
|
*p == 's' ? 1 << 11 : // Safe property
|
|
*p == 'm' ? 1 << 12 : // Nonmalleable property
|
|
*p == 'x' ? 1 << 13 : // Expensive verify
|
|
*p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
|
|
*p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
|
|
*p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
|
|
*p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
|
|
*p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
|
|
(throw std::logic_error("Unknown character in _mst literal"), 0)
|
|
);
|
|
}
|
|
|
|
return typ;
|
|
}
|
|
|
|
using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
|
|
|
|
template<typename Key> struct Node;
|
|
template<typename Key> using NodeRef = std::shared_ptr<const Node<Key>>;
|
|
|
|
//! Construct a miniscript node as a shared_ptr.
|
|
template<typename Key, typename... Args>
|
|
NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_shared<const Node<Key>>(std::forward<Args>(args)...); }
|
|
|
|
//! The different node types in miniscript.
|
|
enum class Fragment {
|
|
JUST_0, //!< OP_0
|
|
JUST_1, //!< OP_1
|
|
PK_K, //!< [key]
|
|
PK_H, //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY
|
|
OLDER, //!< [n] OP_CHECKSEQUENCEVERIFY
|
|
AFTER, //!< [n] OP_CHECKLOCKTIMEVERIFY
|
|
SHA256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL
|
|
HASH256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL
|
|
RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL
|
|
HASH160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL
|
|
WRAP_A, //!< OP_TOALTSTACK [X] OP_FROMALTSTACK
|
|
WRAP_S, //!< OP_SWAP [X]
|
|
WRAP_C, //!< [X] OP_CHECKSIG
|
|
WRAP_D, //!< OP_DUP OP_IF [X] OP_ENDIF
|
|
WRAP_V, //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X)
|
|
WRAP_J, //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF
|
|
WRAP_N, //!< [X] OP_0NOTEQUAL
|
|
AND_V, //!< [X] [Y]
|
|
AND_B, //!< [X] [Y] OP_BOOLAND
|
|
OR_B, //!< [X] [Y] OP_BOOLOR
|
|
OR_C, //!< [X] OP_NOTIF [Y] OP_ENDIF
|
|
OR_D, //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
|
|
OR_I, //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF
|
|
ANDOR, //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
|
|
THRESH, //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL
|
|
MULTI, //!< [k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context)
|
|
MULTI_A, //!< [key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx)
|
|
// AND_N(X,Y) is represented as ANDOR(X,Y,0)
|
|
// WRAP_T(X) is represented as AND_V(X,1)
|
|
// WRAP_L(X) is represented as OR_I(0,X)
|
|
// WRAP_U(X) is represented as OR_I(X,0)
|
|
};
|
|
|
|
enum class Availability {
|
|
NO,
|
|
YES,
|
|
MAYBE,
|
|
};
|
|
|
|
enum class MiniscriptContext {
|
|
P2WSH,
|
|
TAPSCRIPT,
|
|
};
|
|
|
|
/** Whether the context Tapscript, ensuring the only other possibility is P2WSH. */
|
|
constexpr bool IsTapscript(MiniscriptContext ms_ctx)
|
|
{
|
|
switch (ms_ctx) {
|
|
case MiniscriptContext::P2WSH: return false;
|
|
case MiniscriptContext::TAPSCRIPT: return true;
|
|
}
|
|
assert(false);
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
//! The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with a sighash type byte.)
|
|
static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65};
|
|
|
|
//! version + nLockTime
|
|
constexpr uint32_t TX_OVERHEAD{4 + 4};
|
|
//! prevout + nSequence + scriptSig
|
|
constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1};
|
|
//! nValue + script len + OP_0 + pushdata 32.
|
|
constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33};
|
|
//! Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout + segwit marker
|
|
constexpr uint32_t TX_BODY_LEEWAY_WEIGHT{(TX_OVERHEAD + GetSizeOfCompactSize(1) + TXIN_BYTES_NO_WITNESS + GetSizeOfCompactSize(1) + P2WSH_TXOUT_BYTES) * WITNESS_SCALE_FACTOR + 2};
|
|
//! Maximum possible stack size to spend a Taproot output (excluding the script itself).
|
|
constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE{GetSizeOfCompactSize(MAX_STACK_SIZE) + (GetSizeOfCompactSize(MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) + MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) * MAX_STACK_SIZE + GetSizeOfCompactSize(TAPROOT_CONTROL_MAX_SIZE) + TAPROOT_CONTROL_MAX_SIZE};
|
|
/** The maximum size of a script depending on the context. */
|
|
constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
|
|
{
|
|
if (IsTapscript(ms_ctx)) {
|
|
// Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly
|
|
// bounded by the maximum standard size of a spending transaction. Let the maximum script
|
|
// size conservatively be small enough such that even a maximum sized witness and a reasonably
|
|
// sized spending transaction can spend an output paying to this script without running into
|
|
// the maximum standard tx size limit.
|
|
constexpr auto max_size{MAX_STANDARD_TX_WEIGHT - TX_BODY_LEEWAY_WEIGHT - MAX_TAPSCRIPT_SAT_SIZE};
|
|
return max_size - GetSizeOfCompactSize(max_size);
|
|
}
|
|
return MAX_STANDARD_P2WSH_SCRIPT_SIZE;
|
|
}
|
|
|
|
//! Helper function for Node::CalcType.
|
|
Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
|
|
|
|
//! Helper function for Node::CalcScriptLen.
|
|
size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
|
|
|
|
//! A helper sanitizer/checker for the output of CalcType.
|
|
Type SanitizeType(Type x);
|
|
|
|
//! An object representing a sequence of witness stack elements.
|
|
struct InputStack {
|
|
/** Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
|
|
* The MAYBE value is used for size estimation, when keys/preimages may actually be unavailable,
|
|
* but may be available at signing time. This makes the InputStack structure and signing logic,
|
|
* filled with dummy signatures/preimages usable for witness size estimation.
|
|
*/
|
|
Availability available = Availability::YES;
|
|
//! Whether this stack contains a digital signature.
|
|
bool has_sig = false;
|
|
//! Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
|
|
bool malleable = false;
|
|
//! Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
|
|
//! Note that this flag does not affect the satisfaction algorithm; it is only used for sanity checking.
|
|
bool non_canon = false;
|
|
//! Serialized witness size.
|
|
size_t size = 0;
|
|
//! Data elements.
|
|
std::vector<std::vector<unsigned char>> stack;
|
|
//! Construct an empty stack (valid).
|
|
InputStack() = default;
|
|
//! Construct a valid single-element stack (with an element up to 75 bytes).
|
|
InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
|
|
//! Change availability
|
|
InputStack& SetAvailable(Availability avail);
|
|
//! Mark this input stack as having a signature.
|
|
InputStack& SetWithSig();
|
|
//! Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
|
|
InputStack& SetNonCanon();
|
|
//! Mark this input stack as malleable.
|
|
InputStack& SetMalleable(bool x = true);
|
|
//! Concatenate two input stacks.
|
|
friend InputStack operator+(InputStack a, InputStack b);
|
|
//! Choose between two potential input stacks.
|
|
friend InputStack operator|(InputStack a, InputStack b);
|
|
};
|
|
|
|
/** A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in numeric context). */
|
|
static const auto ZERO = InputStack(std::vector<unsigned char>());
|
|
/** A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challenges). */
|
|
static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
|
|
/** A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric context). */
|
|
static const auto ONE = InputStack(Vector((unsigned char)1));
|
|
/** The empty stack. */
|
|
static const auto EMPTY = InputStack();
|
|
/** A stack representing the lack of any (dis)satisfactions. */
|
|
static const auto INVALID = InputStack().SetAvailable(Availability::NO);
|
|
|
|
//! A pair of a satisfaction and a dissatisfaction InputStack.
|
|
struct InputResult {
|
|
InputStack nsat, sat;
|
|
|
|
template<typename A, typename B>
|
|
InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
|
|
};
|
|
|
|
//! Class whose objects represent the maximum of a list of integers.
|
|
template<typename I>
|
|
struct MaxInt {
|
|
const bool valid;
|
|
const I value;
|
|
|
|
MaxInt() : valid(false), value(0) {}
|
|
MaxInt(I val) : valid(true), value(val) {}
|
|
|
|
friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
|
|
if (!a.valid || !b.valid) return {};
|
|
return a.value + b.value;
|
|
}
|
|
|
|
friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
|
|
if (!a.valid) return b;
|
|
if (!b.valid) return a;
|
|
return std::max(a.value, b.value);
|
|
}
|
|
};
|
|
|
|
struct Ops {
|
|
//! Non-push opcodes.
|
|
uint32_t count;
|
|
//! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
|
|
MaxInt<uint32_t> sat;
|
|
//! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
|
|
MaxInt<uint32_t> dsat;
|
|
|
|
Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
|
|
};
|
|
|
|
/** A data structure to help the calculation of stack size limits.
|
|
*
|
|
* Conceptually, every SatInfo object corresponds to a (possibly empty) set of script execution
|
|
* traces (sequences of opcodes).
|
|
* - SatInfo{} corresponds to the empty set.
|
|
* - SatInfo{n, e} corresponds to a single trace whose net effect is removing n elements from the
|
|
* stack (may be negative for a net increase), and reaches a maximum of e stack elements more
|
|
* than it ends with.
|
|
* - operator| is the union operation: (a | b) corresponds to the union of the traces in a and the
|
|
* traces in b.
|
|
* - operator+ is the concatenation operator: (a + b) corresponds to the set of traces formed by
|
|
* concatenating any trace in a with any trace in b.
|
|
*
|
|
* Its fields are:
|
|
* - valid is true if the set is non-empty.
|
|
* - netdiff (if valid) is the largest difference between stack size at the beginning and at the
|
|
* end of the script across all traces in the set.
|
|
* - exec (if valid) is the largest difference between stack size anywhere during execution and at
|
|
* the end of the script, across all traces in the set (note that this is not necessarily due
|
|
* to the same trace as the one that resulted in the value for netdiff).
|
|
*
|
|
* This allows us to build up stack size limits for any script efficiently, by starting from the
|
|
* individual opcodes miniscripts correspond to, using concatenation to construct scripts, and
|
|
* using the union operation to choose between execution branches. Since any top-level script
|
|
* satisfaction ends with a single stack element, we know that for a full script:
|
|
* - netdiff+1 is the maximal initial stack size (relevant for P2WSH stack limits).
|
|
* - exec+1 is the maximal stack size reached during execution (relevant for P2TR stack limits).
|
|
*
|
|
* Mathematically, SatInfo forms a semiring:
|
|
* - operator| is the semiring addition operator, with identity SatInfo{}, and which is commutative
|
|
* and associative.
|
|
* - operator+ is the semiring multiplication operator, with identity SatInfo{0}, and which is
|
|
* associative.
|
|
* - operator+ is distributive over operator|, so (a + (b | c)) = (a+b | a+c). This means we do not
|
|
* need to actually materialize all possible full execution traces over the whole script (which
|
|
* may be exponential in the length of the script); instead we can use the union operation at the
|
|
* individual subexpression level, and concatenate the result with subexpressions before and
|
|
* after it.
|
|
* - It is not a commutative semiring, because a+b can differ from b+a. For example, "OP_1 OP_DROP"
|
|
* has exec=1, while "OP_DROP OP_1" has exec=0.
|
|
*/
|
|
struct SatInfo {
|
|
//! Whether a canonical satisfaction/dissatisfaction is possible at all.
|
|
const bool valid;
|
|
//! How much higher the stack size at start of execution can be compared to at the end.
|
|
const int32_t netdiff;
|
|
//! Mow much higher the stack size can be during execution compared to at the end.
|
|
const int32_t exec;
|
|
|
|
/** Empty script set. */
|
|
constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {}
|
|
|
|
/** Script set with a single script in it, with specified netdiff and exec. */
|
|
constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept :
|
|
valid{true}, netdiff{in_netdiff}, exec{in_exec} {}
|
|
|
|
/** Script set union. */
|
|
constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept
|
|
{
|
|
// Union with an empty set is itself.
|
|
if (!a.valid) return b;
|
|
if (!b.valid) return a;
|
|
// Otherwise the netdiff and exec of the union is the maximum of the individual values.
|
|
return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)};
|
|
}
|
|
|
|
/** Script set concatenation. */
|
|
constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept
|
|
{
|
|
// Concatenation with an empty set yields an empty set.
|
|
if (!a.valid || !b.valid) return {};
|
|
// Otherwise, the maximum stack size difference for the combined scripts is the sum of the
|
|
// netdiffs, and the maximum stack size difference anywhere is either b.exec (if the
|
|
// maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a).
|
|
return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)};
|
|
}
|
|
|
|
/** The empty script. */
|
|
static constexpr SatInfo Empty() noexcept { return {0, 0}; }
|
|
/** A script consisting of a single push opcode. */
|
|
static constexpr SatInfo Push() noexcept { return {-1, 0}; }
|
|
/** A script consisting of a single hash opcode. */
|
|
static constexpr SatInfo Hash() noexcept { return {0, 0}; }
|
|
/** A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY). */
|
|
static constexpr SatInfo Nop() noexcept { return {0, 0}; }
|
|
/** A script consisting of just OP_IF or OP_NOTIF. Note that OP_ELSE and OP_ENDIF have no stack effect. */
|
|
static constexpr SatInfo If() noexcept { return {1, 1}; }
|
|
/** A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD). */
|
|
static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; }
|
|
|
|
// Scripts for specific individual opcodes.
|
|
static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; }
|
|
static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; }
|
|
static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; }
|
|
static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; }
|
|
static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; }
|
|
static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; }
|
|
static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; }
|
|
static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; }
|
|
};
|
|
|
|
struct StackSize {
|
|
const SatInfo sat, dsat;
|
|
|
|
constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {};
|
|
constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {};
|
|
};
|
|
|
|
struct WitnessSize {
|
|
//! Maximum witness size to satisfy;
|
|
MaxInt<uint32_t> sat;
|
|
//! Maximum witness size to dissatisfy;
|
|
MaxInt<uint32_t> dsat;
|
|
|
|
WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
|
|
};
|
|
|
|
struct NoDupCheck {};
|
|
|
|
} // namespace internal
|
|
|
|
//! A node in a miniscript expression.
|
|
template<typename Key>
|
|
struct Node {
|
|
//! What node type this node is.
|
|
const Fragment fragment;
|
|
//! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
|
|
const uint32_t k = 0;
|
|
//! The keys used by this expression (only for PK_K/PK_H/MULTI)
|
|
const std::vector<Key> keys;
|
|
//! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
|
|
const std::vector<unsigned char> data;
|
|
//! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH)
|
|
mutable std::vector<NodeRef<Key>> subs;
|
|
//! The Script context for this node. Either P2WSH or Tapscript.
|
|
const MiniscriptContext m_script_ctx;
|
|
|
|
/* Destroy the shared pointers iteratively to avoid a stack-overflow due to recursive calls
|
|
* to the subs' destructors. */
|
|
~Node() {
|
|
while (!subs.empty()) {
|
|
auto node = std::move(subs.back());
|
|
subs.pop_back();
|
|
while (!node->subs.empty()) {
|
|
subs.push_back(std::move(node->subs.back()));
|
|
node->subs.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
//! Cached ops counts.
|
|
const internal::Ops ops;
|
|
//! Cached stack size bounds.
|
|
const internal::StackSize ss;
|
|
//! Cached witness size bounds.
|
|
const internal::WitnessSize ws;
|
|
//! Cached expression type (computed by CalcType and fed through SanitizeType).
|
|
const Type typ;
|
|
//! Cached script length (computed by CalcScriptLen).
|
|
const size_t scriptlen;
|
|
//! Whether a public key appears more than once in this node. This value is initialized
|
|
//! by all constructors except the NoDupCheck ones. The NoDupCheck ones skip the
|
|
//! computation, requiring it to be done manually by invoking DuplicateKeyCheck().
|
|
//! DuplicateKeyCheck(), or a non-NoDupCheck constructor, will compute has_duplicate_keys
|
|
//! for all subnodes as well.
|
|
mutable std::optional<bool> has_duplicate_keys;
|
|
|
|
|
|
//! Compute the length of the script for this miniscript (including children).
|
|
size_t CalcScriptLen() const {
|
|
size_t subsize = 0;
|
|
for (const auto& sub : subs) {
|
|
subsize += sub->ScriptSize();
|
|
}
|
|
static constexpr auto NONE_MST{""_mst};
|
|
Type sub0type = subs.size() > 0 ? subs[0]->GetType() : NONE_MST;
|
|
return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx);
|
|
}
|
|
|
|
/* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
|
|
*
|
|
* The algorithm is defined by two functions: downfn and upfn. Conceptually, the
|
|
* result can be thought of as first using downfn to compute a "state" for each node,
|
|
* from the root down to the leaves. Then upfn is used to compute a "result" for each
|
|
* node, from the leaves back up to the root, which is then returned. In the actual
|
|
* implementation, both functions are invoked in an interleaved fashion, performing a
|
|
* depth-first traversal of the tree.
|
|
*
|
|
* In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
|
|
* - root is the state of the root node, of type State.
|
|
* - downfn is a callable (State&, const Node&, size_t) -> State, which given a
|
|
* node, its state, and an index of one of its children, computes the state of that
|
|
* child. It can modify the state. Children of a given node will have downfn()
|
|
* called in order.
|
|
* - upfn is a callable (State&&, const Node&, Span<Result>) -> std::optional<Result>,
|
|
* which given a node, its state, and a Span of the results of its children,
|
|
* computes the result of the node. If std::nullopt is returned by upfn,
|
|
* TreeEvalMaybe() immediately returns std::nullopt.
|
|
* The return value of TreeEvalMaybe is the result of the root node.
|
|
*
|
|
* Result type cannot be bool due to the std::vector<bool> specialization.
|
|
*/
|
|
template<typename Result, typename State, typename DownFn, typename UpFn>
|
|
std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
|
|
{
|
|
/** Entries of the explicit stack tracked in this algorithm. */
|
|
struct StackElem
|
|
{
|
|
const Node& node; //!< The node being evaluated.
|
|
size_t expanded; //!< How many children of this node have been expanded.
|
|
State state; //!< The state for that node.
|
|
|
|
StackElem(const Node& node_, size_t exp_, State&& state_) :
|
|
node(node_), expanded(exp_), state(std::move(state_)) {}
|
|
};
|
|
/* Stack of tree nodes being explored. */
|
|
std::vector<StackElem> stack;
|
|
/* Results of subtrees so far. Their order and mapping to tree nodes
|
|
* is implicitly defined by stack. */
|
|
std::vector<Result> results;
|
|
stack.emplace_back(*this, 0, std::move(root_state));
|
|
|
|
/* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
|
|
* State variables are omitted for simplicity.
|
|
*
|
|
* First: stack=[(A,0)] results=[]
|
|
* stack=[(A,1),(B,0)] results=[]
|
|
* stack=[(A,1)] results=[B]
|
|
* stack=[(A,2),(C,0)] results=[B]
|
|
* stack=[(A,2),(C,1),(D,0)] results=[B]
|
|
* stack=[(A,2),(C,1)] results=[B,D]
|
|
* stack=[(A,2),(C,2),(E,0)] results=[B,D]
|
|
* stack=[(A,2),(C,2)] results=[B,D,E]
|
|
* stack=[(A,2)] results=[B,C]
|
|
* stack=[(A,3),(F,0)] results=[B,C]
|
|
* stack=[(A,3)] results=[B,C,F]
|
|
* Final: stack=[] results=[A]
|
|
*/
|
|
while (stack.size()) {
|
|
const Node& node = stack.back().node;
|
|
if (stack.back().expanded < node.subs.size()) {
|
|
/* We encounter a tree node with at least one unexpanded child.
|
|
* Expand it. By the time we hit this node again, the result of
|
|
* that child (and all earlier children) will be at the end of `results`. */
|
|
size_t child_index = stack.back().expanded++;
|
|
State child_state = downfn(stack.back().state, node, child_index);
|
|
stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
|
|
continue;
|
|
}
|
|
// Invoke upfn with the last node.subs.size() elements of results as input.
|
|
assert(results.size() >= node.subs.size());
|
|
std::optional<Result> result{upfn(std::move(stack.back().state), node,
|
|
Span<Result>{results}.last(node.subs.size()))};
|
|
// If evaluation returns std::nullopt, abort immediately.
|
|
if (!result) return {};
|
|
// Replace the last node.subs.size() elements of results with the new result.
|
|
results.erase(results.end() - node.subs.size(), results.end());
|
|
results.push_back(std::move(*result));
|
|
stack.pop_back();
|
|
}
|
|
// The final remaining results element is the root result, return it.
|
|
assert(results.size() == 1);
|
|
return std::move(results[0]);
|
|
}
|
|
|
|
/** Like TreeEvalMaybe, but without downfn or State type.
|
|
* upfn takes (const Node&, Span<Result>) and returns std::optional<Result>. */
|
|
template<typename Result, typename UpFn>
|
|
std::optional<Result> TreeEvalMaybe(UpFn upfn) const
|
|
{
|
|
struct DummyState {};
|
|
return TreeEvalMaybe<Result>(DummyState{},
|
|
[](DummyState, const Node&, size_t) { return DummyState{}; },
|
|
[&upfn](DummyState, const Node& node, Span<Result> subs) {
|
|
return upfn(node, subs);
|
|
}
|
|
);
|
|
}
|
|
|
|
/** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */
|
|
template<typename Result, typename State, typename DownFn, typename UpFn>
|
|
Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
|
|
{
|
|
// Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
|
|
// unconditionally dereference the result (it cannot be std::nullopt).
|
|
return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
|
|
std::forward<DownFn>(downfn),
|
|
[&upfn](State&& state, const Node& node, Span<Result> subs) {
|
|
Result res{upfn(std::move(state), node, subs)};
|
|
return std::optional<Result>(std::move(res));
|
|
}
|
|
));
|
|
}
|
|
|
|
/** Like TreeEval, but without downfn or State type.
|
|
* upfn takes (const Node&, Span<Result>) and returns Result. */
|
|
template<typename Result, typename UpFn>
|
|
Result TreeEval(UpFn upfn) const
|
|
{
|
|
struct DummyState {};
|
|
return std::move(*TreeEvalMaybe<Result>(DummyState{},
|
|
[](DummyState, const Node&, size_t) { return DummyState{}; },
|
|
[&upfn](DummyState, const Node& node, Span<Result> subs) {
|
|
Result res{upfn(node, subs)};
|
|
return std::optional<Result>(std::move(res));
|
|
}
|
|
));
|
|
}
|
|
|
|
/** Compare two miniscript subtrees, using a non-recursive algorithm. */
|
|
friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
|
|
{
|
|
std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
|
|
queue.emplace_back(node1, node2);
|
|
while (!queue.empty()) {
|
|
const auto& [a, b] = queue.back();
|
|
queue.pop_back();
|
|
if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
|
|
if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
|
|
if (a.subs.size() < b.subs.size()) return -1;
|
|
if (b.subs.size() < a.subs.size()) return 1;
|
|
size_t n = a.subs.size();
|
|
for (size_t i = 0; i < n; ++i) {
|
|
queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//! Compute the type for this miniscript.
|
|
Type CalcType() const {
|
|
using namespace internal;
|
|
|
|
// THRESH has a variable number of subexpressions
|
|
std::vector<Type> sub_types;
|
|
if (fragment == Fragment::THRESH) {
|
|
for (const auto& sub : subs) sub_types.push_back(sub->GetType());
|
|
}
|
|
// All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
|
|
static constexpr auto NONE_MST{""_mst};
|
|
Type x = subs.size() > 0 ? subs[0]->GetType() : NONE_MST;
|
|
Type y = subs.size() > 1 ? subs[1]->GetType() : NONE_MST;
|
|
Type z = subs.size() > 2 ? subs[2]->GetType() : NONE_MST;
|
|
|
|
return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx));
|
|
}
|
|
|
|
public:
|
|
template<typename Ctx>
|
|
CScript ToScript(const Ctx& ctx) const
|
|
{
|
|
// To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
|
|
// The State is a boolean: whether or not the node's script expansion is followed
|
|
// by an OP_VERIFY (which may need to be combined with the last script opcode).
|
|
auto downfn = [](bool verify, const Node& node, size_t index) {
|
|
// For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
|
|
if (node.fragment == Fragment::WRAP_V) return true;
|
|
// The subexpression of WRAP_S, and the last subexpression of AND_V
|
|
// inherit the followed-by-OP_VERIFY property from the parent.
|
|
if (node.fragment == Fragment::WRAP_S ||
|
|
(node.fragment == Fragment::AND_V && index == 1)) return verify;
|
|
return false;
|
|
};
|
|
// The upward function computes for a node, given its followed-by-OP_VERIFY status
|
|
// and the CScripts of its child nodes, the CScript of the node.
|
|
const bool is_tapscript{IsTapscript(m_script_ctx)};
|
|
auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, Span<CScript> subs) -> CScript {
|
|
switch (node.fragment) {
|
|
case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
|
|
case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
|
|
case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY);
|
|
case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY);
|
|
case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
|
|
case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
|
|
case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
|
|
case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
|
|
case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK);
|
|
case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
|
|
case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
|
|
case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF);
|
|
case Fragment::WRAP_V: {
|
|
if (node.subs[0]->GetType() << "x"_mst) {
|
|
return BuildScript(std::move(subs[0]), OP_VERIFY);
|
|
} else {
|
|
return std::move(subs[0]);
|
|
}
|
|
}
|
|
case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF);
|
|
case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
|
|
case Fragment::JUST_1: return BuildScript(OP_1);
|
|
case Fragment::JUST_0: return BuildScript(OP_0);
|
|
case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
|
|
case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
|
|
case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
|
|
case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
|
|
case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
|
|
case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
|
|
case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
|
|
case Fragment::MULTI: {
|
|
CHECK_NONFATAL(!is_tapscript);
|
|
CScript script = BuildScript(node.k);
|
|
for (const auto& key : node.keys) {
|
|
script = BuildScript(std::move(script), ctx.ToPKBytes(key));
|
|
}
|
|
return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
|
|
}
|
|
case Fragment::MULTI_A: {
|
|
CHECK_NONFATAL(is_tapscript);
|
|
CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG);
|
|
for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) {
|
|
script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD);
|
|
}
|
|
return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL);
|
|
}
|
|
case Fragment::THRESH: {
|
|
CScript script = std::move(subs[0]);
|
|
for (size_t i = 1; i < subs.size(); ++i) {
|
|
script = BuildScript(std::move(script), subs[i], OP_ADD);
|
|
}
|
|
return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
|
|
}
|
|
}
|
|
assert(false);
|
|
};
|
|
return TreeEval<CScript>(false, downfn, upfn);
|
|
}
|
|
|
|
template<typename CTx>
|
|
std::optional<std::string> ToString(const CTx& ctx) const {
|
|
// To construct the std::string representation for a Miniscript object, we use
|
|
// the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
|
|
// wrapper. If so, non-wrapper expressions must be prefixed with a ":".
|
|
auto downfn = [](bool, const Node& node, size_t) {
|
|
return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
|
|
node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
|
|
node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
|
|
node.fragment == Fragment::WRAP_C ||
|
|
(node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) ||
|
|
(node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) ||
|
|
(node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0));
|
|
};
|
|
// The upward function computes for a node, given whether its parent is a wrapper,
|
|
// and the string representations of its child nodes, the string representation of the node.
|
|
const bool is_tapscript{IsTapscript(m_script_ctx)};
|
|
auto upfn = [&ctx, is_tapscript](bool wrapped, const Node& node, Span<std::string> subs) -> std::optional<std::string> {
|
|
std::string ret = wrapped ? ":" : "";
|
|
|
|
switch (node.fragment) {
|
|
case Fragment::WRAP_A: return "a" + std::move(subs[0]);
|
|
case Fragment::WRAP_S: return "s" + std::move(subs[0]);
|
|
case Fragment::WRAP_C:
|
|
if (node.subs[0]->fragment == Fragment::PK_K) {
|
|
// pk(K) is syntactic sugar for c:pk_k(K)
|
|
auto key_str = ctx.ToString(node.subs[0]->keys[0]);
|
|
if (!key_str) return {};
|
|
return std::move(ret) + "pk(" + std::move(*key_str) + ")";
|
|
}
|
|
if (node.subs[0]->fragment == Fragment::PK_H) {
|
|
// pkh(K) is syntactic sugar for c:pk_h(K)
|
|
auto key_str = ctx.ToString(node.subs[0]->keys[0]);
|
|
if (!key_str) return {};
|
|
return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
|
|
}
|
|
return "c" + std::move(subs[0]);
|
|
case Fragment::WRAP_D: return "d" + std::move(subs[0]);
|
|
case Fragment::WRAP_V: return "v" + std::move(subs[0]);
|
|
case Fragment::WRAP_J: return "j" + std::move(subs[0]);
|
|
case Fragment::WRAP_N: return "n" + std::move(subs[0]);
|
|
case Fragment::AND_V:
|
|
// t:X is syntactic sugar for and_v(X,1).
|
|
if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
|
|
break;
|
|
case Fragment::OR_I:
|
|
if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
|
|
if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
|
|
break;
|
|
default: break;
|
|
}
|
|
switch (node.fragment) {
|
|
case Fragment::PK_K: {
|
|
auto key_str = ctx.ToString(node.keys[0]);
|
|
if (!key_str) return {};
|
|
return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
|
|
}
|
|
case Fragment::PK_H: {
|
|
auto key_str = ctx.ToString(node.keys[0]);
|
|
if (!key_str) return {};
|
|
return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
|
|
}
|
|
case Fragment::AFTER: return std::move(ret) + "after(" + util::ToString(node.k) + ")";
|
|
case Fragment::OLDER: return std::move(ret) + "older(" + util::ToString(node.k) + ")";
|
|
case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
|
|
case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
|
|
case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
|
|
case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
|
|
case Fragment::JUST_1: return std::move(ret) + "1";
|
|
case Fragment::JUST_0: return std::move(ret) + "0";
|
|
case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
|
|
case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
|
|
case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
|
|
case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
|
|
case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
|
|
case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
|
|
case Fragment::ANDOR:
|
|
// and_n(X,Y) is syntactic sugar for andor(X,Y,0).
|
|
if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
|
|
return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
|
|
case Fragment::MULTI: {
|
|
CHECK_NONFATAL(!is_tapscript);
|
|
auto str = std::move(ret) + "multi(" + util::ToString(node.k);
|
|
for (const auto& key : node.keys) {
|
|
auto key_str = ctx.ToString(key);
|
|
if (!key_str) return {};
|
|
str += "," + std::move(*key_str);
|
|
}
|
|
return std::move(str) + ")";
|
|
}
|
|
case Fragment::MULTI_A: {
|
|
CHECK_NONFATAL(is_tapscript);
|
|
auto str = std::move(ret) + "multi_a(" + util::ToString(node.k);
|
|
for (const auto& key : node.keys) {
|
|
auto key_str = ctx.ToString(key);
|
|
if (!key_str) return {};
|
|
str += "," + std::move(*key_str);
|
|
}
|
|
return std::move(str) + ")";
|
|
}
|
|
case Fragment::THRESH: {
|
|
auto str = std::move(ret) + "thresh(" + util::ToString(node.k);
|
|
for (auto& sub : subs) {
|
|
str += "," + std::move(sub);
|
|
}
|
|
return std::move(str) + ")";
|
|
}
|
|
default: break;
|
|
}
|
|
assert(false);
|
|
};
|
|
|
|
return TreeEvalMaybe<std::string>(false, downfn, upfn);
|
|
}
|
|
|
|
private:
|
|
internal::Ops CalcOps() const {
|
|
switch (fragment) {
|
|
case Fragment::JUST_1: return {0, 0, {}};
|
|
case Fragment::JUST_0: return {0, {}, 0};
|
|
case Fragment::PK_K: return {0, 0, 0};
|
|
case Fragment::PK_H: return {3, 0, 0};
|
|
case Fragment::OLDER:
|
|
case Fragment::AFTER: return {1, 0, {}};
|
|
case Fragment::SHA256:
|
|
case Fragment::RIPEMD160:
|
|
case Fragment::HASH256:
|
|
case Fragment::HASH160: return {4, 0, {}};
|
|
case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
|
|
case Fragment::AND_B: {
|
|
const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
|
|
const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
|
|
const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
|
|
return {count, sat, dsat};
|
|
}
|
|
case Fragment::OR_B: {
|
|
const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
|
|
const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
|
|
const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
|
|
return {count, sat, dsat};
|
|
}
|
|
case Fragment::OR_D: {
|
|
const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
|
|
const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
|
|
const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
|
|
return {count, sat, dsat};
|
|
}
|
|
case Fragment::OR_C: {
|
|
const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
|
|
const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
|
|
return {count, sat, {}};
|
|
}
|
|
case Fragment::OR_I: {
|
|
const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
|
|
const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
|
|
const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
|
|
return {count, sat, dsat};
|
|
}
|
|
case Fragment::ANDOR: {
|
|
const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
|
|
const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
|
|
const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
|
|
return {count, sat, dsat};
|
|
}
|
|
case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
|
|
case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0};
|
|
case Fragment::WRAP_S:
|
|
case Fragment::WRAP_C:
|
|
case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
|
|
case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
|
|
case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
|
|
case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
|
|
case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
|
|
case Fragment::THRESH: {
|
|
uint32_t count = 0;
|
|
auto sats = Vector(internal::MaxInt<uint32_t>(0));
|
|
for (const auto& sub : subs) {
|
|
count += sub->ops.count + 1;
|
|
auto next_sats = Vector(sats[0] + sub->ops.dsat);
|
|
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
|
|
next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
|
|
sats = std::move(next_sats);
|
|
}
|
|
assert(k <= sats.size());
|
|
return {count, sats[k], sats[0]};
|
|
}
|
|
}
|
|
assert(false);
|
|
}
|
|
|
|
internal::StackSize CalcStackSize() const {
|
|
using namespace internal;
|
|
switch (fragment) {
|
|
case Fragment::JUST_0: return {{}, SatInfo::Push()};
|
|
case Fragment::JUST_1: return {SatInfo::Push(), {}};
|
|
case Fragment::OLDER:
|
|
case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}};
|
|
case Fragment::PK_K: return {SatInfo::Push()};
|
|
case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()};
|
|
case Fragment::SHA256:
|
|
case Fragment::RIPEMD160:
|
|
case Fragment::HASH256:
|
|
case Fragment::HASH160: return {
|
|
SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(),
|
|
{}
|
|
};
|
|
case Fragment::ANDOR: {
|
|
const auto& x{subs[0]->ss};
|
|
const auto& y{subs[1]->ss};
|
|
const auto& z{subs[2]->ss};
|
|
return {
|
|
(x.sat + SatInfo::If() + y.sat) | (x.dsat + SatInfo::If() + z.sat),
|
|
x.dsat + SatInfo::If() + z.dsat
|
|
};
|
|
}
|
|
case Fragment::AND_V: {
|
|
const auto& x{subs[0]->ss};
|
|
const auto& y{subs[1]->ss};
|
|
return {x.sat + y.sat, {}};
|
|
}
|
|
case Fragment::AND_B: {
|
|
const auto& x{subs[0]->ss};
|
|
const auto& y{subs[1]->ss};
|
|
return {x.sat + y.sat + SatInfo::BinaryOp(), x.dsat + y.dsat + SatInfo::BinaryOp()};
|
|
}
|
|
case Fragment::OR_B: {
|
|
const auto& x{subs[0]->ss};
|
|
const auto& y{subs[1]->ss};
|
|
return {
|
|
((x.sat + y.dsat) | (x.dsat + y.sat)) + SatInfo::BinaryOp(),
|
|
x.dsat + y.dsat + SatInfo::BinaryOp()
|
|
};
|
|
}
|
|
case Fragment::OR_C: {
|
|
const auto& x{subs[0]->ss};
|
|
const auto& y{subs[1]->ss};
|
|
return {(x.sat + SatInfo::If()) | (x.dsat + SatInfo::If() + y.sat), {}};
|
|
}
|
|
case Fragment::OR_D: {
|
|
const auto& x{subs[0]->ss};
|
|
const auto& y{subs[1]->ss};
|
|
return {
|
|
(x.sat + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.sat),
|
|
x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.dsat
|
|
};
|
|
}
|
|
case Fragment::OR_I: {
|
|
const auto& x{subs[0]->ss};
|
|
const auto& y{subs[1]->ss};
|
|
return {SatInfo::If() + (x.sat | y.sat), SatInfo::If() + (x.dsat | y.dsat)};
|
|
}
|
|
// multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k
|
|
// signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and
|
|
// n itself, and ends with 1 stack element (success or failure). Thus, it net removes
|
|
// k elements (from k+1 to 1), while reaching k+n+2 more than it ends with.
|
|
case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)};
|
|
// multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the
|
|
// signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net
|
|
// removes n-1 elements (from n to 1) while reaching n more than it ends with.
|
|
case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())};
|
|
case Fragment::WRAP_A:
|
|
case Fragment::WRAP_N:
|
|
case Fragment::WRAP_S: return subs[0]->ss;
|
|
case Fragment::WRAP_C: return {
|
|
subs[0]->ss.sat + SatInfo::OP_CHECKSIG(),
|
|
subs[0]->ss.dsat + SatInfo::OP_CHECKSIG()
|
|
};
|
|
case Fragment::WRAP_D: return {
|
|
SatInfo::OP_DUP() + SatInfo::If() + subs[0]->ss.sat,
|
|
SatInfo::OP_DUP() + SatInfo::If()
|
|
};
|
|
case Fragment::WRAP_V: return {subs[0]->ss.sat + SatInfo::OP_VERIFY(), {}};
|
|
case Fragment::WRAP_J: return {
|
|
SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0]->ss.sat,
|
|
SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If()
|
|
};
|
|
case Fragment::THRESH: {
|
|
// sats[j] is the SatInfo corresponding to all traces reaching j satisfactions.
|
|
auto sats = Vector(SatInfo::Empty());
|
|
for (size_t i = 0; i < subs.size(); ++i) {
|
|
// Loop over the subexpressions, processing them one by one. After adding
|
|
// element i we need to add OP_ADD (if i>0).
|
|
auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty();
|
|
// Construct a variable that will become the next sats, starting with index 0.
|
|
auto next_sats = Vector(sats[0] + subs[i]->ss.dsat + add);
|
|
// Then loop to construct next_sats[1..i].
|
|
for (size_t j = 1; j < sats.size(); ++j) {
|
|
next_sats.push_back(((sats[j] + subs[i]->ss.dsat) | (sats[j - 1] + subs[i]->ss.sat)) + add);
|
|
}
|
|
// Finally construct next_sats[i+1].
|
|
next_sats.push_back(sats[sats.size() - 1] + subs[i]->ss.sat + add);
|
|
// Switch over.
|
|
sats = std::move(next_sats);
|
|
}
|
|
// To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both
|
|
// cases a push of k and an OP_EQUAL follow.
|
|
return {
|
|
sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(),
|
|
sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL()
|
|
};
|
|
}
|
|
}
|
|
assert(false);
|
|
}
|
|
|
|
internal::WitnessSize CalcWitnessSize() const {
|
|
const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72;
|
|
const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33;
|
|
switch (fragment) {
|
|
case Fragment::JUST_0: return {{}, 0};
|
|
case Fragment::JUST_1:
|
|
case Fragment::OLDER:
|
|
case Fragment::AFTER: return {0, {}};
|
|
case Fragment::PK_K: return {sig_size, 1};
|
|
case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size};
|
|
case Fragment::SHA256:
|
|
case Fragment::RIPEMD160:
|
|
case Fragment::HASH256:
|
|
case Fragment::HASH160: return {1 + 32, {}};
|
|
case Fragment::ANDOR: {
|
|
const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)};
|
|
const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat};
|
|
return {sat, dsat};
|
|
}
|
|
case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}};
|
|
case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat};
|
|
case Fragment::OR_B: {
|
|
const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)};
|
|
const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat};
|
|
return {sat, dsat};
|
|
}
|
|
case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}};
|
|
case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat};
|
|
case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)};
|
|
case Fragment::MULTI: return {k * sig_size + 1, k + 1};
|
|
case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())};
|
|
case Fragment::WRAP_A:
|
|
case Fragment::WRAP_N:
|
|
case Fragment::WRAP_S:
|
|
case Fragment::WRAP_C: return subs[0]->ws;
|
|
case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1};
|
|
case Fragment::WRAP_V: return {subs[0]->ws.sat, {}};
|
|
case Fragment::WRAP_J: return {subs[0]->ws.sat, 1};
|
|
case Fragment::THRESH: {
|
|
auto sats = Vector(internal::MaxInt<uint32_t>(0));
|
|
for (const auto& sub : subs) {
|
|
auto next_sats = Vector(sats[0] + sub->ws.dsat);
|
|
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat));
|
|
next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat);
|
|
sats = std::move(next_sats);
|
|
}
|
|
assert(k <= sats.size());
|
|
return {sats[k], sats[0]};
|
|
}
|
|
}
|
|
assert(false);
|
|
}
|
|
|
|
template<typename Ctx>
|
|
internal::InputResult ProduceInput(const Ctx& ctx) const {
|
|
using namespace internal;
|
|
|
|
// Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
|
|
// given those of its subnodes.
|
|
auto helper = [&ctx](const Node& node, Span<InputResult> subres) -> InputResult {
|
|
switch (node.fragment) {
|
|
case Fragment::PK_K: {
|
|
std::vector<unsigned char> sig;
|
|
Availability avail = ctx.Sign(node.keys[0], sig);
|
|
return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
|
|
}
|
|
case Fragment::PK_H: {
|
|
std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
|
|
Availability avail = ctx.Sign(node.keys[0], sig);
|
|
return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
|
|
}
|
|
case Fragment::MULTI_A: {
|
|
// sats[j] represents the best stack containing j valid signatures (out of the first i keys).
|
|
// In the loop below, these stacks are built up using a dynamic programming approach.
|
|
std::vector<InputStack> sats = Vector(EMPTY);
|
|
for (size_t i = 0; i < node.keys.size(); ++i) {
|
|
// Get the signature for the i'th key in reverse order (the signature for the first key needs to
|
|
// be at the top of the stack, contrary to CHECKMULTISIG's satisfaction).
|
|
std::vector<unsigned char> sig;
|
|
Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig);
|
|
// Compute signature stack for just this key.
|
|
auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
|
|
// Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
|
|
// next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature
|
|
// for the current (i'th) key. The very last element needs all signatures filled.
|
|
std::vector<InputStack> next_sats;
|
|
next_sats.push_back(sats[0] + ZERO);
|
|
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat));
|
|
next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
|
|
// Switch over.
|
|
sats = std::move(next_sats);
|
|
}
|
|
// The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
|
|
// satisfying 0 keys.
|
|
auto& nsat{sats[0]};
|
|
assert(node.k != 0);
|
|
assert(node.k <= sats.size());
|
|
return {std::move(nsat), std::move(sats[node.k])};
|
|
}
|
|
case Fragment::MULTI: {
|
|
// sats[j] represents the best stack containing j valid signatures (out of the first i keys).
|
|
// In the loop below, these stacks are built up using a dynamic programming approach.
|
|
// sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
|
|
std::vector<InputStack> sats = Vector(ZERO);
|
|
for (size_t i = 0; i < node.keys.size(); ++i) {
|
|
std::vector<unsigned char> sig;
|
|
Availability avail = ctx.Sign(node.keys[i], sig);
|
|
// Compute signature stack for just the i'th key.
|
|
auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
|
|
// Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
|
|
// next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
|
|
// current (i'th) key. The very last element needs all signatures filled.
|
|
std::vector<InputStack> next_sats;
|
|
next_sats.push_back(sats[0]);
|
|
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
|
|
next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
|
|
// Switch over.
|
|
sats = std::move(next_sats);
|
|
}
|
|
// The dissatisfaction consists of k+1 stack elements all equal to 0.
|
|
InputStack nsat = ZERO;
|
|
for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
|
|
assert(node.k <= sats.size());
|
|
return {std::move(nsat), std::move(sats[node.k])};
|
|
}
|
|
case Fragment::THRESH: {
|
|
// sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
|
|
// In the loop below, these stacks are built up using a dynamic programming approach.
|
|
// sats[0] starts off empty.
|
|
std::vector<InputStack> sats = Vector(EMPTY);
|
|
for (size_t i = 0; i < subres.size(); ++i) {
|
|
// Introduce an alias for the i'th last satisfaction/dissatisfaction.
|
|
auto& res = subres[subres.size() - i - 1];
|
|
// Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
|
|
// so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
|
|
// (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
|
|
std::vector<InputStack> next_sats;
|
|
next_sats.push_back(sats[0] + res.nsat);
|
|
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
|
|
next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
|
|
// Switch over.
|
|
sats = std::move(next_sats);
|
|
}
|
|
// At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
|
|
// is computed by gathering all sats[i].nsat for i != k.
|
|
InputStack nsat = INVALID;
|
|
for (size_t i = 0; i < sats.size(); ++i) {
|
|
// i==k is the satisfaction; i==0 is the canonical dissatisfaction;
|
|
// the rest are non-canonical (a no-signature dissatisfaction - the i=0
|
|
// form - is always available) and malleable (due to overcompleteness).
|
|
// Marking the solutions malleable here is not strictly necessary, as they
|
|
// should already never be picked in non-malleable solutions due to the
|
|
// availability of the i=0 form.
|
|
if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
|
|
// Include all dissatisfactions (even these non-canonical ones) in nsat.
|
|
if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
|
|
}
|
|
assert(node.k <= sats.size());
|
|
return {std::move(nsat), std::move(sats[node.k])};
|
|
}
|
|
case Fragment::OLDER: {
|
|
return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
|
|
}
|
|
case Fragment::AFTER: {
|
|
return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
|
|
}
|
|
case Fragment::SHA256: {
|
|
std::vector<unsigned char> preimage;
|
|
Availability avail = ctx.SatSHA256(node.data, preimage);
|
|
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
|
|
}
|
|
case Fragment::RIPEMD160: {
|
|
std::vector<unsigned char> preimage;
|
|
Availability avail = ctx.SatRIPEMD160(node.data, preimage);
|
|
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
|
|
}
|
|
case Fragment::HASH256: {
|
|
std::vector<unsigned char> preimage;
|
|
Availability avail = ctx.SatHASH256(node.data, preimage);
|
|
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
|
|
}
|
|
case Fragment::HASH160: {
|
|
std::vector<unsigned char> preimage;
|
|
Availability avail = ctx.SatHASH160(node.data, preimage);
|
|
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
|
|
}
|
|
case Fragment::AND_V: {
|
|
auto& x = subres[0], &y = subres[1];
|
|
// As the dissatisfaction here only consist of a single option, it doesn't
|
|
// actually need to be listed (it's not required for reasoning about malleability of
|
|
// other options), and is never required (no valid miniscript relies on the ability
|
|
// to satisfy the type V left subexpression). It's still listed here for
|
|
// completeness, as a hypothetical (not currently implemented) satisfier that doesn't
|
|
// care about malleability might in some cases prefer it still.
|
|
return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
|
|
}
|
|
case Fragment::AND_B: {
|
|
auto& x = subres[0], &y = subres[1];
|
|
// Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
|
|
// as malleable. While they are definitely malleable, they are also non-canonical due
|
|
// to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
|
|
// option. Because of that, the 2nd and 3rd option will never be chosen, even if they
|
|
// weren't marked as malleable.
|
|
return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
|
|
}
|
|
case Fragment::OR_B: {
|
|
auto& x = subres[0], &z = subres[1];
|
|
// The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
|
|
return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
|
|
}
|
|
case Fragment::OR_C: {
|
|
auto& x = subres[0], &z = subres[1];
|
|
return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
|
|
}
|
|
case Fragment::OR_D: {
|
|
auto& x = subres[0], &z = subres[1];
|
|
return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
|
|
}
|
|
case Fragment::OR_I: {
|
|
auto& x = subres[0], &z = subres[1];
|
|
return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
|
|
}
|
|
case Fragment::ANDOR: {
|
|
auto& x = subres[0], &y = subres[1], &z = subres[2];
|
|
return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
|
|
}
|
|
case Fragment::WRAP_A:
|
|
case Fragment::WRAP_S:
|
|
case Fragment::WRAP_C:
|
|
case Fragment::WRAP_N:
|
|
return std::move(subres[0]);
|
|
case Fragment::WRAP_D: {
|
|
auto &x = subres[0];
|
|
return {ZERO, x.sat + ONE};
|
|
}
|
|
case Fragment::WRAP_J: {
|
|
auto &x = subres[0];
|
|
// If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
|
|
// As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
|
|
// if a dissatisfaction with a top zero element is found, we don't know whether another one with a
|
|
// nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
|
|
// dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
|
|
return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
|
|
}
|
|
case Fragment::WRAP_V: {
|
|
auto &x = subres[0];
|
|
return {INVALID, std::move(x.sat)};
|
|
}
|
|
case Fragment::JUST_0: return {EMPTY, INVALID};
|
|
case Fragment::JUST_1: return {INVALID, EMPTY};
|
|
}
|
|
assert(false);
|
|
return {INVALID, INVALID};
|
|
};
|
|
|
|
auto tester = [&helper](const Node& node, Span<InputResult> subres) -> InputResult {
|
|
auto ret = helper(node, subres);
|
|
|
|
// Do a consistency check between the satisfaction code and the type checker
|
|
// (the actual satisfaction code in ProduceInputHelper does not use GetType)
|
|
|
|
// For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
|
|
if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 0);
|
|
if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 0);
|
|
|
|
// For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
|
|
if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 1);
|
|
if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 1);
|
|
|
|
// For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
|
|
// the top element cannot be 0.
|
|
if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() >= 1);
|
|
if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() >= 1);
|
|
if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.stack.back().empty());
|
|
|
|
// For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
|
|
// it must be canonical.
|
|
if (node.GetType() << "d"_mst) assert(ret.nsat.available != Availability::NO);
|
|
if (node.GetType() << "d"_mst) assert(!ret.nsat.has_sig);
|
|
if (node.GetType() << "d"_mst && !ret.nsat.malleable) assert(!ret.nsat.non_canon);
|
|
|
|
// For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
|
|
if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.has_sig);
|
|
if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) assert(ret.sat.has_sig);
|
|
|
|
// For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
|
|
if (node.GetType() << "me"_mst) assert(ret.nsat.available != Availability::NO);
|
|
if (node.GetType() << "me"_mst) assert(!ret.nsat.malleable);
|
|
|
|
// For 'm' nodes, if a satisfaction exists, it must be non-malleable.
|
|
if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.malleable);
|
|
|
|
// If a non-malleable satisfaction exists, it must be canonical.
|
|
if (ret.sat.available != Availability::NO && !ret.sat.malleable) assert(!ret.sat.non_canon);
|
|
|
|
return ret;
|
|
};
|
|
|
|
return TreeEval<InputResult>(tester);
|
|
}
|
|
|
|
public:
|
|
/** Update duplicate key information in this Node.
|
|
*
|
|
* This uses a custom key comparator provided by the context in order to still detect duplicates
|
|
* for more complicated types.
|
|
*/
|
|
template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
|
|
{
|
|
// We cannot use a lambda here, as lambdas are non assignable, and the set operations
|
|
// below require moving the comparators around.
|
|
struct Comp {
|
|
const Ctx* ctx_ptr;
|
|
Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
|
|
bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
|
|
};
|
|
|
|
// state in the recursive computation:
|
|
// - std::nullopt means "this node has duplicates"
|
|
// - an std::set means "this node has no duplicate keys, and they are: ...".
|
|
using keyset = std::set<Key, Comp>;
|
|
using state = std::optional<keyset>;
|
|
|
|
auto upfn = [&ctx](const Node& node, Span<state> subs) -> state {
|
|
// If this node is already known to have duplicates, nothing left to do.
|
|
if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
|
|
|
|
// Check if one of the children is already known to have duplicates.
|
|
for (auto& sub : subs) {
|
|
if (!sub.has_value()) {
|
|
node.has_duplicate_keys = true;
|
|
return {};
|
|
}
|
|
}
|
|
|
|
// Start building the set of keys involved in this node and children.
|
|
// Start by keys in this node directly.
|
|
size_t keys_count = node.keys.size();
|
|
keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
|
|
if (key_set.size() != keys_count) {
|
|
// It already has duplicates; bail out.
|
|
node.has_duplicate_keys = true;
|
|
return {};
|
|
}
|
|
|
|
// Merge the keys from the children into this set.
|
|
for (auto& sub : subs) {
|
|
keys_count += sub->size();
|
|
// Small optimization: std::set::merge is linear in the size of the second arg but
|
|
// logarithmic in the size of the first.
|
|
if (key_set.size() < sub->size()) std::swap(key_set, *sub);
|
|
key_set.merge(*sub);
|
|
if (key_set.size() != keys_count) {
|
|
node.has_duplicate_keys = true;
|
|
return {};
|
|
}
|
|
}
|
|
|
|
node.has_duplicate_keys = false;
|
|
return key_set;
|
|
};
|
|
|
|
TreeEval<state>(upfn);
|
|
}
|
|
|
|
//! Return the size of the script for this expression (faster than ToScript().size()).
|
|
size_t ScriptSize() const { return scriptlen; }
|
|
|
|
//! Return the maximum number of ops needed to satisfy this script non-malleably.
|
|
std::optional<uint32_t> GetOps() const {
|
|
if (!ops.sat.valid) return {};
|
|
return ops.count + ops.sat.value;
|
|
}
|
|
|
|
//! Return the number of ops in the script (not counting the dynamic ones that depend on execution).
|
|
uint32_t GetStaticOps() const { return ops.count; }
|
|
|
|
//! Check the ops limit of this script against the consensus limit.
|
|
bool CheckOpsLimit() const {
|
|
if (IsTapscript(m_script_ctx)) return true;
|
|
if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
|
|
return true;
|
|
}
|
|
|
|
/** Whether this node is of type B, K or W. (That is, anything but V.) */
|
|
bool IsBKW() const {
|
|
return !((GetType() & "BKW"_mst) == ""_mst);
|
|
}
|
|
|
|
/** Return the maximum number of stack elements needed to satisfy this script non-malleably. */
|
|
std::optional<uint32_t> GetStackSize() const {
|
|
if (!ss.sat.valid) return {};
|
|
return ss.sat.netdiff + static_cast<int32_t>(IsBKW());
|
|
}
|
|
|
|
//! Return the maximum size of the stack during execution of this script.
|
|
std::optional<uint32_t> GetExecStackSize() const {
|
|
if (!ss.sat.valid) return {};
|
|
return ss.sat.exec + static_cast<int32_t>(IsBKW());
|
|
}
|
|
|
|
//! Check the maximum stack size for this script against the policy limit.
|
|
bool CheckStackSize() const {
|
|
// Since in Tapscript there is no standardness limit on the script and witness sizes, we may run
|
|
// into the maximum stack size while executing the script. Make sure it doesn't happen.
|
|
if (IsTapscript(m_script_ctx)) {
|
|
if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE;
|
|
return true;
|
|
}
|
|
if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
|
|
return true;
|
|
}
|
|
|
|
//! Whether no satisfaction exists for this node.
|
|
bool IsNotSatisfiable() const { return !GetStackSize(); }
|
|
|
|
/** Return the maximum size in bytes of a witness to satisfy this script non-malleably. Note this does
|
|
* not include the witness script push. */
|
|
std::optional<uint32_t> GetWitnessSize() const {
|
|
if (!ws.sat.valid) return {};
|
|
return ws.sat.value;
|
|
}
|
|
|
|
//! Return the expression type.
|
|
Type GetType() const { return typ; }
|
|
|
|
//! Return the script context for this node.
|
|
MiniscriptContext GetMsCtx() const { return m_script_ctx; }
|
|
|
|
//! Find an insane subnode which has no insane children. Nullptr if there is none.
|
|
const Node* FindInsaneSub() const {
|
|
return TreeEval<const Node*>([](const Node& node, Span<const Node*> subs) -> const Node* {
|
|
for (auto& sub: subs) if (sub) return sub;
|
|
if (!node.IsSaneSubexpression()) return &node;
|
|
return nullptr;
|
|
});
|
|
}
|
|
|
|
//! Determine whether a Miniscript node is satisfiable. fn(node) will be invoked for all
|
|
//! key, time, and hashing nodes, and should return their satisfiability.
|
|
template<typename F>
|
|
bool IsSatisfiable(F fn) const
|
|
{
|
|
// TreeEval() doesn't support bool as NodeType, so use int instead.
|
|
return TreeEval<int>([&fn](const Node& node, Span<int> subs) -> bool {
|
|
switch (node.fragment) {
|
|
case Fragment::JUST_0:
|
|
return false;
|
|
case Fragment::JUST_1:
|
|
return true;
|
|
case Fragment::PK_K:
|
|
case Fragment::PK_H:
|
|
case Fragment::MULTI:
|
|
case Fragment::MULTI_A:
|
|
case Fragment::AFTER:
|
|
case Fragment::OLDER:
|
|
case Fragment::HASH256:
|
|
case Fragment::HASH160:
|
|
case Fragment::SHA256:
|
|
case Fragment::RIPEMD160:
|
|
return bool{fn(node)};
|
|
case Fragment::ANDOR:
|
|
return (subs[0] && subs[1]) || subs[2];
|
|
case Fragment::AND_V:
|
|
case Fragment::AND_B:
|
|
return subs[0] && subs[1];
|
|
case Fragment::OR_B:
|
|
case Fragment::OR_C:
|
|
case Fragment::OR_D:
|
|
case Fragment::OR_I:
|
|
return subs[0] || subs[1];
|
|
case Fragment::THRESH:
|
|
return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
|
|
default: // wrappers
|
|
assert(subs.size() == 1);
|
|
return subs[0];
|
|
}
|
|
});
|
|
}
|
|
|
|
//! Check whether this node is valid at all.
|
|
bool IsValid() const {
|
|
if (GetType() == ""_mst) return false;
|
|
return ScriptSize() <= internal::MaxScriptSize(m_script_ctx);
|
|
}
|
|
|
|
//! Check whether this node is valid as a script on its own.
|
|
bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
|
|
|
|
//! Check whether this script can always be satisfied in a non-malleable way.
|
|
bool IsNonMalleable() const { return GetType() << "m"_mst; }
|
|
|
|
//! Check whether this script always needs a signature.
|
|
bool NeedsSignature() const { return GetType() << "s"_mst; }
|
|
|
|
//! Check whether there is no satisfaction path that contains both timelocks and heightlocks
|
|
bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
|
|
|
|
//! Check whether there is no duplicate key across this fragment and all its sub-fragments.
|
|
bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
|
|
|
|
//! Whether successful non-malleable satisfactions are guaranteed to be valid.
|
|
bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
|
|
|
|
//! Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe script on its own.
|
|
bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
|
|
|
|
//! Check whether this node is safe as a script on its own.
|
|
bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
|
|
|
|
//! Produce a witness for this script, if possible and given the information available in the context.
|
|
//! The non-malleable satisfaction is guaranteed to be valid if it exists, and ValidSatisfaction()
|
|
//! is true. If IsSane() holds, this satisfaction is guaranteed to succeed in case the node's
|
|
//! conditions are satisfied (private keys and hash preimages available, locktimes satisfied).
|
|
template<typename Ctx>
|
|
Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
|
|
auto ret = ProduceInput(ctx);
|
|
if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
|
|
stack = std::move(ret.sat.stack);
|
|
return ret.sat.available;
|
|
}
|
|
|
|
//! Equality testing.
|
|
bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
|
|
|
|
// Constructors with various argument combinations, which bypass the duplicate key check.
|
|
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
|
|
: fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
|
|
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
|
|
: fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
|
|
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
|
|
: fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
|
|
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
|
|
: fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
|
|
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
|
|
: fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
|
|
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val = 0)
|
|
: fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
|
|
|
|
// Constructors with various argument combinations, which do perform the duplicate key check.
|
|
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
|
|
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
|
|
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
|
|
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
|
|
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
|
|
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
|
|
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
|
|
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
|
|
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
|
|
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
|
|
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, uint32_t val = 0)
|
|
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); }
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
enum class ParseContext {
|
|
/** An expression which may be begin with wrappers followed by a colon. */
|
|
WRAPPED_EXPR,
|
|
/** A miniscript expression which does not begin with wrappers. */
|
|
EXPR,
|
|
|
|
/** SWAP wraps the top constructed node with s: */
|
|
SWAP,
|
|
/** ALT wraps the top constructed node with a: */
|
|
ALT,
|
|
/** CHECK wraps the top constructed node with c: */
|
|
CHECK,
|
|
/** DUP_IF wraps the top constructed node with d: */
|
|
DUP_IF,
|
|
/** VERIFY wraps the top constructed node with v: */
|
|
VERIFY,
|
|
/** NON_ZERO wraps the top constructed node with j: */
|
|
NON_ZERO,
|
|
/** ZERO_NOTEQUAL wraps the top constructed node with n: */
|
|
ZERO_NOTEQUAL,
|
|
/** WRAP_U will construct an or_i(X,0) node from the top constructed node. */
|
|
WRAP_U,
|
|
/** WRAP_T will construct an and_v(X,1) node from the top constructed node. */
|
|
WRAP_T,
|
|
|
|
/** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */
|
|
AND_N,
|
|
/** AND_V will construct an and_v node from the last two constructed nodes. */
|
|
AND_V,
|
|
/** AND_B will construct an and_b node from the last two constructed nodes. */
|
|
AND_B,
|
|
/** ANDOR will construct an andor node from the last three constructed nodes. */
|
|
ANDOR,
|
|
/** OR_B will construct an or_b node from the last two constructed nodes. */
|
|
OR_B,
|
|
/** OR_C will construct an or_c node from the last two constructed nodes. */
|
|
OR_C,
|
|
/** OR_D will construct an or_d node from the last two constructed nodes. */
|
|
OR_D,
|
|
/** OR_I will construct an or_i node from the last two constructed nodes. */
|
|
OR_I,
|
|
|
|
/** THRESH will read a wrapped expression, and then look for a COMMA. If
|
|
* no comma follows, it will construct a thresh node from the appropriate
|
|
* number of constructed children. Otherwise, it will recurse with another
|
|
* THRESH. */
|
|
THRESH,
|
|
|
|
/** COMMA expects the next element to be ',' and fails if not. */
|
|
COMMA,
|
|
/** CLOSE_BRACKET expects the next element to be ')' and fails if not. */
|
|
CLOSE_BRACKET,
|
|
};
|
|
|
|
int FindNextChar(Span<const char> in, const char m);
|
|
|
|
/** Parse a key string ending at the end of the fragment's text representation. */
|
|
template<typename Key, typename Ctx>
|
|
std::optional<std::pair<Key, int>> ParseKeyEnd(Span<const char> in, const Ctx& ctx)
|
|
{
|
|
int key_size = FindNextChar(in, ')');
|
|
if (key_size < 1) return {};
|
|
auto key = ctx.FromString(in.begin(), in.begin() + key_size);
|
|
if (!key) return {};
|
|
return {{std::move(*key), key_size}};
|
|
}
|
|
|
|
/** Parse a hex string ending at the end of the fragment's text representation. */
|
|
template<typename Ctx>
|
|
std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(Span<const char> in, const size_t expected_size,
|
|
const Ctx& ctx)
|
|
{
|
|
int hash_size = FindNextChar(in, ')');
|
|
if (hash_size < 1) return {};
|
|
std::string val = std::string(in.begin(), in.begin() + hash_size);
|
|
if (!IsHex(val)) return {};
|
|
auto hash = ParseHex(val);
|
|
if (hash.size() != expected_size) return {};
|
|
return {{std::move(hash), hash_size}};
|
|
}
|
|
|
|
/** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */
|
|
template<typename Key>
|
|
void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
|
|
{
|
|
NodeRef<Key> child = std::move(constructed.back());
|
|
constructed.pop_back();
|
|
if (reverse) {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back())));
|
|
} else {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child)));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Parse a miniscript from its textual descriptor form.
|
|
* This does not check whether the script is valid, let alone sane. The caller is expected to use
|
|
* the `IsValidTopLevel()` and `IsSaneTopLevel()` to check for these properties on the node.
|
|
*/
|
|
template<typename Key, typename Ctx>
|
|
inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
|
|
{
|
|
using namespace script;
|
|
|
|
// Account for the minimum script size for all parsed fragments so far. It "borrows" 1
|
|
// script byte from all leaf nodes, counting it instead whenever a space for a recursive
|
|
// expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
|
|
// increment the script_size by at least one, except for:
|
|
// - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
|
|
// This is not an issue however, as "space" for them has to be created by combinators,
|
|
// which do increment script_size.
|
|
// - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
|
|
// (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
|
|
// to be interleaved with other fragments to be valid, so this is not a concern.
|
|
size_t script_size{1};
|
|
size_t max_size{internal::MaxScriptSize(ctx.MsContext())};
|
|
|
|
// The two integers are used to hold state for thresh()
|
|
std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
|
|
std::vector<NodeRef<Key>> constructed;
|
|
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
|
|
// Parses a multi() or multi_a() from its string representation. Returns false on parsing error.
|
|
const auto parse_multi_exp = [&](Span<const char>& in, const bool is_multi_a) -> bool {
|
|
const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG};
|
|
const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH};
|
|
if (ctx.MsContext() != required_ctx) return false;
|
|
// Get threshold
|
|
int next_comma = FindNextChar(in, ',');
|
|
if (next_comma < 1) return false;
|
|
const auto k_to_integral{ToIntegral<int64_t>(std::string_view(in.begin(), next_comma))};
|
|
if (!k_to_integral.has_value()) return false;
|
|
const int64_t k{k_to_integral.value()};
|
|
in = in.subspan(next_comma + 1);
|
|
// Get keys. It is compatible for both compressed and x-only keys.
|
|
std::vector<Key> keys;
|
|
while (next_comma != -1) {
|
|
next_comma = FindNextChar(in, ',');
|
|
int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
|
|
if (key_length < 1) return false;
|
|
auto key = ctx.FromString(in.begin(), in.begin() + key_length);
|
|
if (!key) return false;
|
|
keys.push_back(std::move(*key));
|
|
in = in.subspan(key_length + 1);
|
|
}
|
|
if (keys.size() < 1 || keys.size() > max_keys) return false;
|
|
if (k < 1 || k > (int64_t)keys.size()) return false;
|
|
if (is_multi_a) {
|
|
// (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one.
|
|
script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size();
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k));
|
|
} else {
|
|
script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k));
|
|
}
|
|
return true;
|
|
};
|
|
|
|
while (!to_parse.empty()) {
|
|
if (script_size > max_size) return {};
|
|
|
|
// Get the current context we are decoding within
|
|
auto [cur_context, n, k] = to_parse.back();
|
|
to_parse.pop_back();
|
|
|
|
switch (cur_context) {
|
|
case ParseContext::WRAPPED_EXPR: {
|
|
std::optional<size_t> colon_index{};
|
|
for (size_t i = 1; i < in.size(); ++i) {
|
|
if (in[i] == ':') {
|
|
colon_index = i;
|
|
break;
|
|
}
|
|
if (in[i] < 'a' || in[i] > 'z') break;
|
|
}
|
|
// If there is no colon, this loop won't execute
|
|
bool last_was_v{false};
|
|
for (size_t j = 0; colon_index && j < *colon_index; ++j) {
|
|
if (script_size > max_size) return {};
|
|
if (in[j] == 'a') {
|
|
script_size += 2;
|
|
to_parse.emplace_back(ParseContext::ALT, -1, -1);
|
|
} else if (in[j] == 's') {
|
|
script_size += 1;
|
|
to_parse.emplace_back(ParseContext::SWAP, -1, -1);
|
|
} else if (in[j] == 'c') {
|
|
script_size += 1;
|
|
to_parse.emplace_back(ParseContext::CHECK, -1, -1);
|
|
} else if (in[j] == 'd') {
|
|
script_size += 3;
|
|
to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
|
|
} else if (in[j] == 'j') {
|
|
script_size += 4;
|
|
to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
|
|
} else if (in[j] == 'n') {
|
|
script_size += 1;
|
|
to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
|
|
} else if (in[j] == 'v') {
|
|
// do not permit "...vv...:"; it's not valid, and also doesn't trigger early
|
|
// failure as script_size isn't incremented.
|
|
if (last_was_v) return {};
|
|
to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
|
|
} else if (in[j] == 'u') {
|
|
script_size += 4;
|
|
to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
|
|
} else if (in[j] == 't') {
|
|
script_size += 1;
|
|
to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
|
|
} else if (in[j] == 'l') {
|
|
// The l: wrapper is equivalent to or_i(0,X)
|
|
script_size += 4;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
|
|
to_parse.emplace_back(ParseContext::OR_I, -1, -1);
|
|
} else {
|
|
return {};
|
|
}
|
|
last_was_v = (in[j] == 'v');
|
|
}
|
|
to_parse.emplace_back(ParseContext::EXPR, -1, -1);
|
|
if (colon_index) in = in.subspan(*colon_index + 1);
|
|
break;
|
|
}
|
|
case ParseContext::EXPR: {
|
|
if (Const("0", in)) {
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
|
|
} else if (Const("1", in)) {
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
|
|
} else if (Const("pk(", in)) {
|
|
auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
|
|
if (!res) return {};
|
|
auto& [key, key_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))))));
|
|
in = in.subspan(key_size + 1);
|
|
script_size += IsTapscript(ctx.MsContext()) ? 33 : 34;
|
|
} else if (Const("pkh(", in)) {
|
|
auto res = ParseKeyEnd<Key>(in, ctx);
|
|
if (!res) return {};
|
|
auto& [key, key_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))))));
|
|
in = in.subspan(key_size + 1);
|
|
script_size += 24;
|
|
} else if (Const("pk_k(", in)) {
|
|
auto res = ParseKeyEnd<Key>(in, ctx);
|
|
if (!res) return {};
|
|
auto& [key, key_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))));
|
|
in = in.subspan(key_size + 1);
|
|
script_size += IsTapscript(ctx.MsContext()) ? 32 : 33;
|
|
} else if (Const("pk_h(", in)) {
|
|
auto res = ParseKeyEnd<Key>(in, ctx);
|
|
if (!res) return {};
|
|
auto& [key, key_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))));
|
|
in = in.subspan(key_size + 1);
|
|
script_size += 23;
|
|
} else if (Const("sha256(", in)) {
|
|
auto res = ParseHexStrEnd(in, 32, ctx);
|
|
if (!res) return {};
|
|
auto& [hash, hash_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash)));
|
|
in = in.subspan(hash_size + 1);
|
|
script_size += 38;
|
|
} else if (Const("ripemd160(", in)) {
|
|
auto res = ParseHexStrEnd(in, 20, ctx);
|
|
if (!res) return {};
|
|
auto& [hash, hash_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash)));
|
|
in = in.subspan(hash_size + 1);
|
|
script_size += 26;
|
|
} else if (Const("hash256(", in)) {
|
|
auto res = ParseHexStrEnd(in, 32, ctx);
|
|
if (!res) return {};
|
|
auto& [hash, hash_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash)));
|
|
in = in.subspan(hash_size + 1);
|
|
script_size += 38;
|
|
} else if (Const("hash160(", in)) {
|
|
auto res = ParseHexStrEnd(in, 20, ctx);
|
|
if (!res) return {};
|
|
auto& [hash, hash_size] = *res;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash)));
|
|
in = in.subspan(hash_size + 1);
|
|
script_size += 26;
|
|
} else if (Const("after(", in)) {
|
|
int arg_size = FindNextChar(in, ')');
|
|
if (arg_size < 1) return {};
|
|
const auto num{ToIntegral<int64_t>(std::string_view(in.begin(), arg_size))};
|
|
if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
|
|
in = in.subspan(arg_size + 1);
|
|
script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
|
|
} else if (Const("older(", in)) {
|
|
int arg_size = FindNextChar(in, ')');
|
|
if (arg_size < 1) return {};
|
|
const auto num{ToIntegral<int64_t>(std::string_view(in.begin(), arg_size))};
|
|
if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
|
|
in = in.subspan(arg_size + 1);
|
|
script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
|
|
} else if (Const("multi(", in)) {
|
|
if (!parse_multi_exp(in, /* is_multi_a = */false)) return {};
|
|
} else if (Const("multi_a(", in)) {
|
|
if (!parse_multi_exp(in, /* is_multi_a = */true)) return {};
|
|
} else if (Const("thresh(", in)) {
|
|
int next_comma = FindNextChar(in, ',');
|
|
if (next_comma < 1) return {};
|
|
const auto k{ToIntegral<int64_t>(std::string_view(in.begin(), next_comma))};
|
|
if (!k.has_value() || *k < 1) return {};
|
|
in = in.subspan(next_comma + 1);
|
|
// n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
|
|
to_parse.emplace_back(ParseContext::THRESH, 1, *k);
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
script_size += 2 + (*k > 16) + (*k > 0x7f) + (*k > 0x7fff) + (*k > 0x7fffff);
|
|
} else if (Const("andor(", in)) {
|
|
to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
|
|
to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
to_parse.emplace_back(ParseContext::COMMA, -1, -1);
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
to_parse.emplace_back(ParseContext::COMMA, -1, -1);
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
script_size += 5;
|
|
} else {
|
|
if (Const("and_n(", in)) {
|
|
to_parse.emplace_back(ParseContext::AND_N, -1, -1);
|
|
script_size += 5;
|
|
} else if (Const("and_b(", in)) {
|
|
to_parse.emplace_back(ParseContext::AND_B, -1, -1);
|
|
script_size += 2;
|
|
} else if (Const("and_v(", in)) {
|
|
to_parse.emplace_back(ParseContext::AND_V, -1, -1);
|
|
script_size += 1;
|
|
} else if (Const("or_b(", in)) {
|
|
to_parse.emplace_back(ParseContext::OR_B, -1, -1);
|
|
script_size += 2;
|
|
} else if (Const("or_c(", in)) {
|
|
to_parse.emplace_back(ParseContext::OR_C, -1, -1);
|
|
script_size += 3;
|
|
} else if (Const("or_d(", in)) {
|
|
to_parse.emplace_back(ParseContext::OR_D, -1, -1);
|
|
script_size += 4;
|
|
} else if (Const("or_i(", in)) {
|
|
to_parse.emplace_back(ParseContext::OR_I, -1, -1);
|
|
script_size += 4;
|
|
} else {
|
|
return {};
|
|
}
|
|
to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
to_parse.emplace_back(ParseContext::COMMA, -1, -1);
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
}
|
|
break;
|
|
}
|
|
case ParseContext::ALT: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case ParseContext::SWAP: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case ParseContext::CHECK: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case ParseContext::DUP_IF: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case ParseContext::NON_ZERO: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case ParseContext::ZERO_NOTEQUAL: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case ParseContext::VERIFY: {
|
|
script_size += (constructed.back()->GetType() << "x"_mst);
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case ParseContext::WRAP_U: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
|
|
break;
|
|
}
|
|
case ParseContext::WRAP_T: {
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1)));
|
|
break;
|
|
}
|
|
case ParseContext::AND_B: {
|
|
BuildBack(ctx.MsContext(), Fragment::AND_B, constructed);
|
|
break;
|
|
}
|
|
case ParseContext::AND_N: {
|
|
auto mid = std::move(constructed.back());
|
|
constructed.pop_back();
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
|
|
break;
|
|
}
|
|
case ParseContext::AND_V: {
|
|
BuildBack(ctx.MsContext(), Fragment::AND_V, constructed);
|
|
break;
|
|
}
|
|
case ParseContext::OR_B: {
|
|
BuildBack(ctx.MsContext(), Fragment::OR_B, constructed);
|
|
break;
|
|
}
|
|
case ParseContext::OR_C: {
|
|
BuildBack(ctx.MsContext(), Fragment::OR_C, constructed);
|
|
break;
|
|
}
|
|
case ParseContext::OR_D: {
|
|
BuildBack(ctx.MsContext(), Fragment::OR_D, constructed);
|
|
break;
|
|
}
|
|
case ParseContext::OR_I: {
|
|
BuildBack(ctx.MsContext(), Fragment::OR_I, constructed);
|
|
break;
|
|
}
|
|
case ParseContext::ANDOR: {
|
|
auto right = std::move(constructed.back());
|
|
constructed.pop_back();
|
|
auto mid = std::move(constructed.back());
|
|
constructed.pop_back();
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
|
|
break;
|
|
}
|
|
case ParseContext::THRESH: {
|
|
if (in.size() < 1) return {};
|
|
if (in[0] == ',') {
|
|
in = in.subspan(1);
|
|
to_parse.emplace_back(ParseContext::THRESH, n+1, k);
|
|
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
|
|
script_size += 2;
|
|
} else if (in[0] == ')') {
|
|
if (k > n) return {};
|
|
in = in.subspan(1);
|
|
// Children are constructed in reverse order, so iterate from end to beginning
|
|
std::vector<NodeRef<Key>> subs;
|
|
for (int i = 0; i < n; ++i) {
|
|
subs.push_back(std::move(constructed.back()));
|
|
constructed.pop_back();
|
|
}
|
|
std::reverse(subs.begin(), subs.end());
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
|
|
} else {
|
|
return {};
|
|
}
|
|
break;
|
|
}
|
|
case ParseContext::COMMA: {
|
|
if (in.size() < 1 || in[0] != ',') return {};
|
|
in = in.subspan(1);
|
|
break;
|
|
}
|
|
case ParseContext::CLOSE_BRACKET: {
|
|
if (in.size() < 1 || in[0] != ')') return {};
|
|
in = in.subspan(1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sanity checks on the produced miniscript
|
|
assert(constructed.size() == 1);
|
|
assert(constructed[0]->ScriptSize() == script_size);
|
|
if (in.size() > 0) return {};
|
|
NodeRef<Key> tl_node = std::move(constructed.front());
|
|
tl_node->DuplicateKeyCheck(ctx);
|
|
return tl_node;
|
|
}
|
|
|
|
/** Decode a script into opcode/push pairs.
|
|
*
|
|
* Construct a vector with one element per opcode in the script, in reverse order.
|
|
* Each element is a pair consisting of the opcode, as well as the data pushed by
|
|
* the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY,
|
|
* OP_NUMEQUALVERIFY and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG,
|
|
* OP_EQUAL and OP_NUMEQUAL respectively, plus OP_VERIFY.
|
|
*/
|
|
std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
|
|
|
|
/** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */
|
|
std::optional<int64_t> ParseScriptNumber(const Opcode& in);
|
|
|
|
enum class DecodeContext {
|
|
/** A single expression of type B, K, or V. Specifically, this can't be an
|
|
* and_v or an expression of type W (a: and s: wrappers). */
|
|
SINGLE_BKV_EXPR,
|
|
/** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple)
|
|
* and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */
|
|
BKV_EXPR,
|
|
/** An expression of type W (a: or s: wrappers). */
|
|
W_EXPR,
|
|
|
|
/** SWAP expects the next element to be OP_SWAP (inside a W-type expression that
|
|
* didn't end with FROMALTSTACK), and wraps the top of the constructed stack
|
|
* with s: */
|
|
SWAP,
|
|
/** ALT expects the next element to be TOALTSTACK (we must have already read a
|
|
* FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */
|
|
ALT,
|
|
/** CHECK wraps the top constructed node with c: */
|
|
CHECK,
|
|
/** DUP_IF wraps the top constructed node with d: */
|
|
DUP_IF,
|
|
/** VERIFY wraps the top constructed node with v: */
|
|
VERIFY,
|
|
/** NON_ZERO wraps the top constructed node with j: */
|
|
NON_ZERO,
|
|
/** ZERO_NOTEQUAL wraps the top constructed node with n: */
|
|
ZERO_NOTEQUAL,
|
|
|
|
/** MAYBE_AND_V will check if the next part of the script could be a valid
|
|
* miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR
|
|
* to decode it and construct the and_v node. This is recursive, to deal with
|
|
* multiple and_v nodes inside each other. */
|
|
MAYBE_AND_V,
|
|
/** AND_V will construct an and_v node from the last two constructed nodes. */
|
|
AND_V,
|
|
/** AND_B will construct an and_b node from the last two constructed nodes. */
|
|
AND_B,
|
|
/** ANDOR will construct an andor node from the last three constructed nodes. */
|
|
ANDOR,
|
|
/** OR_B will construct an or_b node from the last two constructed nodes. */
|
|
OR_B,
|
|
/** OR_C will construct an or_c node from the last two constructed nodes. */
|
|
OR_C,
|
|
/** OR_D will construct an or_d node from the last two constructed nodes. */
|
|
OR_D,
|
|
|
|
/** In a thresh expression, all sub-expressions other than the first are W-type,
|
|
* and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR
|
|
* or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */
|
|
THRESH_W,
|
|
/** THRESH_E constructs a thresh node from the appropriate number of constructed
|
|
* children. */
|
|
THRESH_E,
|
|
|
|
/** ENDIF signals that we are inside some sort of OP_IF structure, which could be
|
|
* or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read
|
|
* a BKV_EXPR and then deal with the next opcode case-by-case. */
|
|
ENDIF,
|
|
/** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE,
|
|
* we could either be in an or_d or an or_c node. We then check for IFDUP to
|
|
* distinguish these cases. */
|
|
ENDIF_NOTIF,
|
|
/** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an
|
|
* or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an
|
|
* OP_NOTIF. */
|
|
ENDIF_ELSE,
|
|
};
|
|
|
|
//! Parse a miniscript from a bitcoin script
|
|
template<typename Key, typename Ctx, typename I>
|
|
inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
|
|
{
|
|
// The two integers are used to hold state for thresh()
|
|
std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
|
|
std::vector<NodeRef<Key>> constructed;
|
|
|
|
// This is the top level, so we assume the type is B
|
|
// (in particular, disallowing top level W expressions)
|
|
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
|
|
|
|
while (!to_parse.empty()) {
|
|
// Exit early if the Miniscript is not going to be valid.
|
|
if (!constructed.empty() && !constructed.back()->IsValid()) return {};
|
|
|
|
// Get the current context we are decoding within
|
|
auto [cur_context, n, k] = to_parse.back();
|
|
to_parse.pop_back();
|
|
|
|
switch(cur_context) {
|
|
case DecodeContext::SINGLE_BKV_EXPR: {
|
|
if (in >= last) return {};
|
|
|
|
// Constants
|
|
if (in[0].first == OP_1) {
|
|
++in;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
|
|
break;
|
|
}
|
|
if (in[0].first == OP_0) {
|
|
++in;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
|
|
break;
|
|
}
|
|
// Public keys
|
|
if (in[0].second.size() == 33 || in[0].second.size() == 32) {
|
|
auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
|
|
if (!key) return {};
|
|
++in;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key))));
|
|
break;
|
|
}
|
|
if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
|
|
auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
|
|
if (!key) return {};
|
|
in += 5;
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key))));
|
|
break;
|
|
}
|
|
// Time locks
|
|
std::optional<int64_t> num;
|
|
if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
|
|
in += 2;
|
|
if (*num < 1 || *num > 0x7FFFFFFFL) return {};
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
|
|
break;
|
|
}
|
|
if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
|
|
in += 2;
|
|
if (num < 1 || num > 0x7FFFFFFFL) return {};
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
|
|
break;
|
|
}
|
|
// Hashes
|
|
if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
|
|
if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second));
|
|
in += 7;
|
|
break;
|
|
} else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second));
|
|
in += 7;
|
|
break;
|
|
} else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second));
|
|
in += 7;
|
|
break;
|
|
} else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second));
|
|
in += 7;
|
|
break;
|
|
}
|
|
}
|
|
// Multi
|
|
if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
|
|
if (IsTapscript(ctx.MsContext())) return {};
|
|
std::vector<Key> keys;
|
|
const auto n = ParseScriptNumber(in[1]);
|
|
if (!n || last - in < 3 + *n) return {};
|
|
if (*n < 1 || *n > 20) return {};
|
|
for (int i = 0; i < *n; ++i) {
|
|
if (in[2 + i].second.size() != 33) return {};
|
|
auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
|
|
if (!key) return {};
|
|
keys.push_back(std::move(*key));
|
|
}
|
|
const auto k = ParseScriptNumber(in[2 + *n]);
|
|
if (!k || *k < 1 || *k > *n) return {};
|
|
in += 3 + *n;
|
|
std::reverse(keys.begin(), keys.end());
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k));
|
|
break;
|
|
}
|
|
// Tapscript's equivalent of multi
|
|
if (last - in >= 4 && in[0].first == OP_NUMEQUAL) {
|
|
if (!IsTapscript(ctx.MsContext())) return {};
|
|
// The necessary threshold of signatures.
|
|
const auto k = ParseScriptNumber(in[1]);
|
|
if (!k) return {};
|
|
if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {};
|
|
if (last - in < 2 + *k * 2) return {};
|
|
std::vector<Key> keys;
|
|
keys.reserve(*k);
|
|
// Walk through the expected (pubkey, CHECKSIG[ADD]) pairs.
|
|
for (int pos = 2;; pos += 2) {
|
|
if (last - in < pos + 2) return {};
|
|
// Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key.
|
|
if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {};
|
|
if (in[pos + 1].second.size() != 32) return {};
|
|
auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end());
|
|
if (!key) return {};
|
|
keys.push_back(std::move(*key));
|
|
// Make sure early we don't parse an arbitrary large expression.
|
|
if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
|
|
// OP_CHECKSIG means it was the last one to parse.
|
|
if (in[pos].first == OP_CHECKSIG) break;
|
|
}
|
|
if (keys.size() < (size_t)*k) return {};
|
|
in += 2 + keys.size() * 2;
|
|
std::reverse(keys.begin(), keys.end());
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k));
|
|
break;
|
|
}
|
|
/** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather
|
|
* than BKV_EXPR, because and_v commutes with these wrappers. For example,
|
|
* c:and_v(X,Y) produces the same script as and_v(X,c:Y). */
|
|
// c: wrapper
|
|
if (in[0].first == OP_CHECKSIG) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
// v: wrapper
|
|
if (in[0].first == OP_VERIFY) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
// n: wrapper
|
|
if (in[0].first == OP_0NOTEQUAL) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
// Thresh
|
|
if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
|
|
if (*num < 1) return {};
|
|
in += 2;
|
|
to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
|
|
break;
|
|
}
|
|
// OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
|
|
if (in[0].first == OP_ENDIF) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
/** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because
|
|
* or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as
|
|
* and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as
|
|
* miniscript, while the latter is valid. So we leave the and_v "outside"
|
|
* while decoding. */
|
|
// and_b
|
|
if (in[0].first == OP_BOOLAND) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
// or_b
|
|
if (in[0].first == OP_BOOLOR) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
// Unrecognised expression
|
|
return {};
|
|
}
|
|
case DecodeContext::BKV_EXPR: {
|
|
to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
case DecodeContext::W_EXPR: {
|
|
// a: wrapper
|
|
if (in >= last) return {};
|
|
if (in[0].first == OP_FROMALTSTACK) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::ALT, -1, -1);
|
|
} else {
|
|
to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
|
|
}
|
|
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
case DecodeContext::MAYBE_AND_V: {
|
|
// If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
|
|
// These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
|
|
if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
|
|
to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
|
|
// BKV_EXPR can contain more AND_V nodes
|
|
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
|
|
}
|
|
break;
|
|
}
|
|
case DecodeContext::SWAP: {
|
|
if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
|
|
++in;
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case DecodeContext::ALT: {
|
|
if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
|
|
++in;
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case DecodeContext::CHECK: {
|
|
if (constructed.empty()) return {};
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case DecodeContext::DUP_IF: {
|
|
if (constructed.empty()) return {};
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case DecodeContext::VERIFY: {
|
|
if (constructed.empty()) return {};
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case DecodeContext::NON_ZERO: {
|
|
if (constructed.empty()) return {};
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case DecodeContext::ZERO_NOTEQUAL: {
|
|
if (constructed.empty()) return {};
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
|
|
break;
|
|
}
|
|
case DecodeContext::AND_V: {
|
|
if (constructed.size() < 2) return {};
|
|
BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true);
|
|
break;
|
|
}
|
|
case DecodeContext::AND_B: {
|
|
if (constructed.size() < 2) return {};
|
|
BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true);
|
|
break;
|
|
}
|
|
case DecodeContext::OR_B: {
|
|
if (constructed.size() < 2) return {};
|
|
BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true);
|
|
break;
|
|
}
|
|
case DecodeContext::OR_C: {
|
|
if (constructed.size() < 2) return {};
|
|
BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true);
|
|
break;
|
|
}
|
|
case DecodeContext::OR_D: {
|
|
if (constructed.size() < 2) return {};
|
|
BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true);
|
|
break;
|
|
}
|
|
case DecodeContext::ANDOR: {
|
|
if (constructed.size() < 3) return {};
|
|
NodeRef<Key> left = std::move(constructed.back());
|
|
constructed.pop_back();
|
|
NodeRef<Key> right = std::move(constructed.back());
|
|
constructed.pop_back();
|
|
NodeRef<Key> mid = std::move(constructed.back());
|
|
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
|
|
break;
|
|
}
|
|
case DecodeContext::THRESH_W: {
|
|
if (in >= last) return {};
|
|
if (in[0].first == OP_ADD) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
|
|
to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
|
|
} else {
|
|
to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
|
|
// All children of thresh have type modifier d, so cannot be and_v
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
}
|
|
break;
|
|
}
|
|
case DecodeContext::THRESH_E: {
|
|
if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
|
|
std::vector<NodeRef<Key>> subs;
|
|
for (int i = 0; i < n; ++i) {
|
|
NodeRef<Key> sub = std::move(constructed.back());
|
|
constructed.pop_back();
|
|
subs.push_back(std::move(sub));
|
|
}
|
|
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
|
|
break;
|
|
}
|
|
case DecodeContext::ENDIF: {
|
|
if (in >= last) return {};
|
|
|
|
// could be andor or or_i
|
|
if (in[0].first == OP_ELSE) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
|
|
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
|
|
}
|
|
// could be j: or d: wrapper
|
|
else if (in[0].first == OP_IF) {
|
|
if (last - in >= 2 && in[1].first == OP_DUP) {
|
|
in += 2;
|
|
to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
|
|
} else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
|
|
in += 3;
|
|
to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
|
|
}
|
|
else {
|
|
return {};
|
|
}
|
|
// could be or_c or or_d
|
|
} else if (in[0].first == OP_NOTIF) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
|
|
}
|
|
else {
|
|
return {};
|
|
}
|
|
break;
|
|
}
|
|
case DecodeContext::ENDIF_NOTIF: {
|
|
if (in >= last) return {};
|
|
if (in[0].first == OP_IFDUP) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
|
|
} else {
|
|
to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
|
|
}
|
|
// or_c and or_d both require X to have type modifier d so, can't contain and_v
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
break;
|
|
}
|
|
case DecodeContext::ENDIF_ELSE: {
|
|
if (in >= last) return {};
|
|
if (in[0].first == OP_IF) {
|
|
++in;
|
|
BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true);
|
|
} else if (in[0].first == OP_NOTIF) {
|
|
++in;
|
|
to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
|
|
// andor requires X to have type modifier d, so it can't be and_v
|
|
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
|
|
} else {
|
|
return {};
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (constructed.size() != 1) return {};
|
|
NodeRef<Key> tl_node = std::move(constructed.front());
|
|
tl_node->DuplicateKeyCheck(ctx);
|
|
// Note that due to how ComputeType works (only assign the type to the node if the
|
|
// subs' types are valid) this would fail if any node of tree is badly typed.
|
|
if (!tl_node->IsValidTopLevel()) return {};
|
|
return tl_node;
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
template<typename Ctx>
|
|
inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
|
|
return internal::Parse<typename Ctx::Key>(str, ctx);
|
|
}
|
|
|
|
template<typename Ctx>
|
|
inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
|
|
using namespace internal;
|
|
// A too large Script is necessarily invalid, don't bother parsing it.
|
|
if (script.size() > MaxScriptSize(ctx.MsContext())) return {};
|
|
auto decomposed = DecomposeScript(script);
|
|
if (!decomposed) return {};
|
|
auto it = decomposed->begin();
|
|
auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
|
|
if (!ret) return {};
|
|
if (it != decomposed->end()) return {};
|
|
return ret;
|
|
}
|
|
|
|
} // namespace miniscript
|
|
|
|
#endif // BITCOIN_SCRIPT_MINISCRIPT_H
|