mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-12 04:42:36 -03:00
3c5e388798
Add a constant-time Normalize().
407 lines
14 KiB
C++
407 lines
14 KiB
C++
using namespace std;
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string>
|
|
|
|
#include "num.h"
|
|
#include "field.h"
|
|
|
|
// #define VERIFY_MAGNITUDE 1
|
|
|
|
namespace secp256k1 {
|
|
|
|
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
|
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
|
|
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
|
|
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
|
|
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
|
|
* output.
|
|
*/
|
|
|
|
FieldElem::FieldElem(int x) {
|
|
n[0] = x;
|
|
n[1] = n[2] = n[3] = n[4] = 0;
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
normalized = true;
|
|
#endif
|
|
}
|
|
|
|
FieldElem::FieldElem(const unsigned char *b32) {
|
|
SetBytes(b32);
|
|
}
|
|
|
|
void FieldElem::Normalize() {
|
|
uint64_t c;
|
|
c = n[0];
|
|
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[1];
|
|
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[2];
|
|
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[3];
|
|
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[4];
|
|
uint64_t t4 = c & 0x0FFFFFFFFFFFFULL;
|
|
c >>= 48;
|
|
|
|
// The following code will not modify the t's if c is initially 0.
|
|
c = c * 0x1000003D1ULL + t0;
|
|
t0 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t1;
|
|
t1 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t2;
|
|
t2 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t3;
|
|
t3 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t4;
|
|
t4 = c & 0x0FFFFFFFFFFFFULL;
|
|
|
|
// Replace n's with t's if one of the n's overflows.
|
|
// If none of the n's overflow to begin with, the t's will just be the n's already and
|
|
// we effectively ignore the results of the previous computations.
|
|
n[0] = t0; n[1] = t1; n[2] = t2; n[3] = t3; n[4] = t4;
|
|
|
|
// Subtract p if result >= p
|
|
uint64_t mask = (uint64_t)~(-(int64_t)(n[4] == 0xFFFFFFFFFFFFULL && n[3] == 0xFFFFFFFFFFFFFULL && n[2] == 0xFFFFFFFFFFFFFULL && n[1] == 0xFFFFFFFFFFFFF && n[0] >= 0xFFFFEFFFFFC2FULL));
|
|
n[4] &= mask;
|
|
n[3] &= mask;
|
|
n[2] &= mask;
|
|
n[1] &= mask;
|
|
n[0] -= (~mask & 0xFFFFEFFFFFC2FULL);
|
|
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
normalized = true;
|
|
#endif
|
|
}
|
|
|
|
bool inline FieldElem::IsZero() const {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(normalized);
|
|
#endif
|
|
return (n[0] == 0 && n[1] == 0 && n[2] == 0 && n[3] == 0 && n[4] == 0);
|
|
}
|
|
|
|
bool inline operator==(const FieldElem &a, const FieldElem &b) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.normalized);
|
|
assert(b.normalized);
|
|
#endif
|
|
return (a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2] && a.n[3] == b.n[3] && a.n[4] == b.n[4]);
|
|
}
|
|
|
|
void FieldElem::GetBytes(unsigned char *o) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(normalized);
|
|
#endif
|
|
for (int i=0; i<32; i++) {
|
|
int c = 0;
|
|
for (int j=0; j<2; j++) {
|
|
int limb = (8*i+4*j)/52;
|
|
int shift = (8*i+4*j)%52;
|
|
c |= ((n[limb] >> shift) & 0xF) << (4 * j);
|
|
}
|
|
o[31-i] = c;
|
|
}
|
|
}
|
|
|
|
void FieldElem::SetBytes(const unsigned char *in) {
|
|
n[0] = n[1] = n[2] = n[3] = n[4] = 0;
|
|
for (int i=0; i<32; i++) {
|
|
for (int j=0; j<2; j++) {
|
|
int limb = (8*i+4*j)/52;
|
|
int shift = (8*i+4*j)%52;
|
|
n[limb] |= (uint64_t)((in[31-i] >> (4*j)) & 0xF) << shift;
|
|
}
|
|
}
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
normalized = true;
|
|
#endif
|
|
}
|
|
|
|
void inline FieldElem::SetNeg(const FieldElem &a, int magnitudeIn) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= magnitudeIn);
|
|
magnitude = magnitudeIn + 1;
|
|
normalized = false;
|
|
#endif
|
|
n[0] = 0xFFFFEFFFFFC2FULL * (magnitudeIn + 1) - a.n[0];
|
|
n[1] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[1];
|
|
n[2] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[2];
|
|
n[3] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[3];
|
|
n[4] = 0x0FFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[4];
|
|
}
|
|
|
|
void inline FieldElem::operator*=(int v) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude *= v;
|
|
normalized = false;
|
|
#endif
|
|
n[0] *= v;
|
|
n[1] *= v;
|
|
n[2] *= v;
|
|
n[3] *= v;
|
|
n[4] *= v;
|
|
}
|
|
|
|
void inline FieldElem::operator+=(const FieldElem &a) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude += a.magnitude;
|
|
normalized = false;
|
|
#endif
|
|
n[0] += a.n[0];
|
|
n[1] += a.n[1];
|
|
n[2] += a.n[2];
|
|
n[3] += a.n[3];
|
|
n[4] += a.n[4];
|
|
}
|
|
|
|
void FieldElem::SetMult(const FieldElem &a, const FieldElem &b) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= 8);
|
|
assert(b.magnitude <= 8);
|
|
#endif
|
|
__int128 c = (__int128)a.n[0] * b.n[0];
|
|
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
|
c = c + (__int128)a.n[0] * b.n[1] +
|
|
(__int128)a.n[1] * b.n[0];
|
|
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
|
c = c + (__int128)a.n[0] * b.n[2] +
|
|
(__int128)a.n[1] * b.n[1] +
|
|
(__int128)a.n[2] * b.n[0];
|
|
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
|
c = c + (__int128)a.n[0] * b.n[3] +
|
|
(__int128)a.n[1] * b.n[2] +
|
|
(__int128)a.n[2] * b.n[1] +
|
|
(__int128)a.n[3] * b.n[0];
|
|
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
|
c = c + (__int128)a.n[0] * b.n[4] +
|
|
(__int128)a.n[1] * b.n[3] +
|
|
(__int128)a.n[2] * b.n[2] +
|
|
(__int128)a.n[3] * b.n[1] +
|
|
(__int128)a.n[4] * b.n[0];
|
|
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
|
c = c + (__int128)a.n[1] * b.n[4] +
|
|
(__int128)a.n[2] * b.n[3] +
|
|
(__int128)a.n[3] * b.n[2] +
|
|
(__int128)a.n[4] * b.n[1];
|
|
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
|
c = c + (__int128)a.n[2] * b.n[4] +
|
|
(__int128)a.n[3] * b.n[3] +
|
|
(__int128)a.n[4] * b.n[2];
|
|
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
|
c = c + (__int128)a.n[3] * b.n[4] +
|
|
(__int128)a.n[4] * b.n[3];
|
|
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
|
c = c + (__int128)a.n[4] * b.n[4];
|
|
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
|
uint64_t t9 = c;
|
|
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
|
|
|
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
|
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
|
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
|
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
|
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
|
c = t0 + (__int128)c * 0x1000003D1ULL;
|
|
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
|
n[1] = t1 + c;
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
normalized = false;
|
|
#endif
|
|
}
|
|
|
|
void FieldElem::SetSquare(const FieldElem &a) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= 8);
|
|
#endif
|
|
__int128 c = (__int128)a.n[0] * a.n[0];
|
|
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
|
c = c + (__int128)(a.n[0]*2) * a.n[1];
|
|
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
|
c = c + (__int128)(a.n[0]*2) * a.n[2] +
|
|
(__int128)a.n[1] * a.n[1];
|
|
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
|
c = c + (__int128)(a.n[0]*2) * a.n[3] +
|
|
(__int128)(a.n[1]*2) * a.n[2];
|
|
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
|
c = c + (__int128)(a.n[0]*2) * a.n[4] +
|
|
(__int128)(a.n[1]*2) * a.n[3] +
|
|
(__int128)a.n[2] * a.n[2];
|
|
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
|
c = c + (__int128)(a.n[1]*2) * a.n[4] +
|
|
(__int128)(a.n[2]*2) * a.n[3];
|
|
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
|
c = c + (__int128)(a.n[2]*2) * a.n[4] +
|
|
(__int128)a.n[3] * a.n[3];
|
|
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
|
c = c + (__int128)(a.n[3]*2) * a.n[4];
|
|
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
|
c = c + (__int128)a.n[4] * a.n[4];
|
|
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
|
uint64_t t9 = c;
|
|
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
|
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
|
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
|
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
|
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
|
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
|
c = t0 + (__int128)c * 0x1000003D1ULL;
|
|
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
|
n[1] = t1 + c;
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= 8);
|
|
normalized = false;
|
|
#endif
|
|
}
|
|
|
|
void FieldElem::SetSquareRoot(const FieldElem &a) {
|
|
// calculate a^p, with p={15,780,1022,1023}
|
|
FieldElem a2; a2.SetSquare(a);
|
|
FieldElem a3; a3.SetMult(a2,a);
|
|
FieldElem a6; a6.SetSquare(a3);
|
|
FieldElem a12; a12.SetSquare(a6);
|
|
FieldElem a15; a15.SetMult(a12,a3);
|
|
FieldElem a30; a30.SetSquare(a15);
|
|
FieldElem a60; a60.SetSquare(a30);
|
|
FieldElem a120; a120.SetSquare(a60);
|
|
FieldElem a240; a240.SetSquare(a120);
|
|
FieldElem a255; a255.SetMult(a240,a15);
|
|
FieldElem a510; a510.SetSquare(a255);
|
|
FieldElem a750; a750.SetMult(a510,a240);
|
|
FieldElem a780; a780.SetMult(a750,a30);
|
|
FieldElem a1020; a1020.SetSquare(a510);
|
|
FieldElem a1022; a1022.SetMult(a1020,a2);
|
|
FieldElem a1023; a1023.SetMult(a1022,a);
|
|
FieldElem x = a15;
|
|
for (int i=0; i<21; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1022);
|
|
for (int i=0; i<2; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
SetMult(x,a780);
|
|
}
|
|
|
|
bool FieldElem::IsOdd() const {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(normalized);
|
|
#endif
|
|
return n[0] & 1;
|
|
}
|
|
|
|
std::string FieldElem::ToString() {
|
|
unsigned char tmp[32];
|
|
Normalize();
|
|
GetBytes(tmp);
|
|
std::string ret;
|
|
for (int i=0; i<32; i++) {
|
|
static const char *c = "0123456789ABCDEF";
|
|
ret += c[(tmp[i] >> 4) & 0xF];
|
|
ret += c[(tmp[i]) & 0xF];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void FieldElem::SetHex(const std::string &str) {
|
|
unsigned char tmp[32] = {};
|
|
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
|
|
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
|
|
for (unsigned int i=0; i<32; i++) {
|
|
if (str.length() > i*2)
|
|
tmp[32 - str.length()/2 + i] = (cvt[(unsigned char)str[2*i]] << 4) + cvt[(unsigned char)str[2*i+1]];
|
|
}
|
|
SetBytes(tmp);
|
|
}
|
|
|
|
static const unsigned char field_p_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F};
|
|
|
|
FieldConstants::FieldConstants() : field_p(field_p_, sizeof(field_p_)) {}
|
|
|
|
const FieldConstants &GetFieldConst() {
|
|
static const FieldConstants field_const;
|
|
return field_const;
|
|
}
|
|
|
|
// Nonbuiltin Field Inverse is not constant time.
|
|
void FieldElem::SetInverse(FieldElem &a) {
|
|
#if defined(USE_FIELDINVERSE_BUILTIN)
|
|
// calculate a^p, with p={45,63,1019,1023}
|
|
FieldElem a2; a2.SetSquare(a);
|
|
FieldElem a3; a3.SetMult(a2,a);
|
|
FieldElem a4; a4.SetSquare(a2);
|
|
FieldElem a5; a5.SetMult(a4,a);
|
|
FieldElem a10; a10.SetSquare(a5);
|
|
FieldElem a11; a11.SetMult(a10,a);
|
|
FieldElem a21; a21.SetMult(a11,a10);
|
|
FieldElem a42; a42.SetSquare(a21);
|
|
FieldElem a45; a45.SetMult(a42,a3);
|
|
FieldElem a63; a63.SetMult(a42,a21);
|
|
FieldElem a126; a126.SetSquare(a63);
|
|
FieldElem a252; a252.SetSquare(a126);
|
|
FieldElem a504; a504.SetSquare(a252);
|
|
FieldElem a1008; a1008.SetSquare(a504);
|
|
FieldElem a1019; a1019.SetMult(a1008,a11);
|
|
FieldElem a1023; a1023.SetMult(a1019,a4);
|
|
FieldElem x = a63;
|
|
for (int i=0; i<21; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1019);
|
|
for (int i=0; i<2; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
SetMult(x,a45);
|
|
#else
|
|
unsigned char b[32];
|
|
a.Normalize();
|
|
a.GetBytes(b);
|
|
{
|
|
const Number &p = GetFieldConst().field_p;
|
|
Number n; n.SetBytes(b, 32);
|
|
n.SetModInverse(n, p);
|
|
n.GetBytes(b, 32);
|
|
}
|
|
SetBytes(b);
|
|
#endif
|
|
}
|
|
|
|
}
|