bitcoin/src/arith_uint256.cpp
laanwj 8e3c266a4f
Merge bitcoin/bitcoin#24077: util: Make base_uint::GetHex() and base_uint::SetHex() not depend on uint256
a4f4f89815 Replace uint256 specific implementations of base_uint::GetHex() and base_uint::SetHex() with proper ones that don't depend on uint256 and replace template methods instantiations of base_uint with template class instantiation (Samer Afach)

Pull request description:

  The current implementations of `SetHex()` and `GetHex()` in `base_uint` use `arith_uint256`'s implementations. Which means, any attempt to create anything other than `arith_uint256` (say `arith_uint512`) and using any of these functions (which is what I needed in my application) will just not work and will cause compilation errors (besides the immediate linking errors due to templates being in source files instantiated only for 256) because there's no viable conversion from `arith_uint256` and any of the other possible types. Besides that these function will yield wrong results even if the conversion is possible depending on the size. This is fixed in this PR.

ACKs for top commit:
  laanwj:
    re-ACK a4f4f89815

Tree-SHA512: 92a930fb7ddec5a5565deae2386f7d2d84645f9e8532f8d0c0178367ae081019b32eedcb59cc11028bac0cb15d9883228e016a466b1ee8fc3c6377b4df1d4180
2022-04-14 07:15:22 +02:00

254 lines
6.6 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <arith_uint256.h>
#include <uint256.h>
#include <crypto/common.h>
template <unsigned int BITS>
base_uint<BITS>::base_uint(const std::string& str)
{
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
SetHex(str);
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i + k + 1 < WIDTH && shift != 0)
pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
if (i + k < WIDTH)
pn[i + k] |= (a.pn[i] << shift);
}
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i - k - 1 >= 0 && shift != 0)
pn[i - k - 1] |= (a.pn[i] << (32 - shift));
if (i - k >= 0)
pn[i - k] |= (a.pn[i] >> shift);
}
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++) {
uint64_t n = carry + (uint64_t)b32 * pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
{
base_uint<BITS> a;
for (int j = 0; j < WIDTH; j++) {
uint64_t carry = 0;
for (int i = 0; i + j < WIDTH; i++) {
uint64_t n = carry + a.pn[i + j] + (uint64_t)pn[j] * b.pn[i];
a.pn[i + j] = n & 0xffffffff;
carry = n >> 32;
}
}
*this = a;
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
{
base_uint<BITS> div = b; // make a copy, so we can shift.
base_uint<BITS> num = *this; // make a copy, so we can subtract.
*this = 0; // the quotient.
int num_bits = num.bits();
int div_bits = div.bits();
if (div_bits == 0)
throw uint_error("Division by zero");
if (div_bits > num_bits) // the result is certainly 0.
return *this;
int shift = num_bits - div_bits;
div <<= shift; // shift so that div and num align.
while (shift >= 0) {
if (num >= div) {
num -= div;
pn[shift / 32] |= (1U << (shift & 31)); // set a bit of the result.
}
div >>= 1; // shift back.
shift--;
}
// num now contains the remainder of the division.
return *this;
}
template <unsigned int BITS>
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
{
for (int i = WIDTH - 1; i >= 0; i--) {
if (pn[i] < b.pn[i])
return -1;
if (pn[i] > b.pn[i])
return 1;
}
return 0;
}
template <unsigned int BITS>
bool base_uint<BITS>::EqualTo(uint64_t b) const
{
for (int i = WIDTH - 1; i >= 2; i--) {
if (pn[i])
return false;
}
if (pn[1] != (b >> 32))
return false;
if (pn[0] != (b & 0xfffffffful))
return false;
return true;
}
template <unsigned int BITS>
double base_uint<BITS>::getdouble() const
{
double ret = 0.0;
double fact = 1.0;
for (int i = 0; i < WIDTH; i++) {
ret += fact * pn[i];
fact *= 4294967296.0;
}
return ret;
}
template <unsigned int BITS>
std::string base_uint<BITS>::GetHex() const
{
base_blob<BITS> b;
for (int x = 0; x < this->WIDTH; ++x) {
WriteLE32(b.begin() + x*4, this->pn[x]);
}
return b.GetHex();
}
template <unsigned int BITS>
void base_uint<BITS>::SetHex(const char* psz)
{
base_blob<BITS> b;
b.SetHex(psz);
for (int x = 0; x < this->WIDTH; ++x) {
this->pn[x] = ReadLE32(b.begin() + x*4);
}
}
template <unsigned int BITS>
void base_uint<BITS>::SetHex(const std::string& str)
{
SetHex(str.c_str());
}
template <unsigned int BITS>
std::string base_uint<BITS>::ToString() const
{
return GetHex();
}
template <unsigned int BITS>
unsigned int base_uint<BITS>::bits() const
{
for (int pos = WIDTH - 1; pos >= 0; pos--) {
if (pn[pos]) {
for (int nbits = 31; nbits > 0; nbits--) {
if (pn[pos] & 1U << nbits)
return 32 * pos + nbits + 1;
}
return 32 * pos + 1;
}
}
return 0;
}
// Explicit instantiations for base_uint<256>
template class base_uint<256>;
// This implementation directly uses shifts instead of going
// through an intermediate MPI representation.
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3) {
nWord >>= 8 * (3 - nSize);
*this = nWord;
} else {
*this = nWord;
*this <<= 8 * (nSize - 3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
uint32_t arith_uint256::GetCompact(bool fNegative) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3) {
nCompact = GetLow64() << 8 * (3 - nSize);
} else {
arith_uint256 bn = *this >> 8 * (nSize - 3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000) {
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffffU) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}
uint256 ArithToUint256(const arith_uint256 &a)
{
uint256 b;
for(int x=0; x<a.WIDTH; ++x)
WriteLE32(b.begin() + x*4, a.pn[x]);
return b;
}
arith_uint256 UintToArith256(const uint256 &a)
{
arith_uint256 b;
for(int x=0; x<b.WIDTH; ++x)
b.pn[x] = ReadLE32(a.begin() + x*4);
return b;
}