mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-26 03:03:22 -03:00
9b5950db86
If we find a solution which has no waste, just use that. This solution is what we would consider to be optimal, and other solutions we find would have to also have 0 waste, so they are equivalent to the first one with 0 waste. Thus we can optimize by just choosing the first one with 0 waste.
331 lines
15 KiB
C++
331 lines
15 KiB
C++
// Copyright (c) 2017-2019 The Bitcoin Core developers
|
||
// Distributed under the MIT software license, see the accompanying
|
||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||
|
||
#include <wallet/coinselection.h>
|
||
|
||
#include <optional.h>
|
||
#include <util/system.h>
|
||
#include <util/moneystr.h>
|
||
|
||
// Descending order comparator
|
||
struct {
|
||
bool operator()(const OutputGroup& a, const OutputGroup& b) const
|
||
{
|
||
return a.effective_value > b.effective_value;
|
||
}
|
||
} descending;
|
||
|
||
/*
|
||
* This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
|
||
* set that can pay for the spending target and does not exceed the spending target by more than the
|
||
* cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
|
||
* tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
|
||
* are sorted by their effective values and the trees is explored deterministically per the inclusion
|
||
* branch first. At each node, the algorithm checks whether the selection is within the target range.
|
||
* While the selection has not reached the target range, more UTXOs are included. When a selection's
|
||
* value exceeds the target range, the complete subtree deriving from this selection can be omitted.
|
||
* At that point, the last included UTXO is deselected and the corresponding omission branch explored
|
||
* instead. The search ends after the complete tree has been searched or after a limited number of tries.
|
||
*
|
||
* The search continues to search for better solutions after one solution has been found. The best
|
||
* solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
|
||
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
|
||
* inputs, plus the amount the selection exceeds the spending target:
|
||
*
|
||
* waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
|
||
*
|
||
* The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
|
||
* the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
|
||
* cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
|
||
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
|
||
* predecessor.
|
||
*
|
||
* The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
|
||
* https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
|
||
*
|
||
* @param const std::vector<CInputCoin>& utxo_pool The set of UTXOs that we are choosing from.
|
||
* These UTXOs will be sorted in descending order by effective value and the CInputCoins'
|
||
* values are their effective values.
|
||
* @param const CAmount& target_value This is the value that we want to select. It is the lower
|
||
* bound of the range.
|
||
* @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
|
||
* This plus target_value is the upper bound of the range.
|
||
* @param std::set<CInputCoin>& out_set -> This is an output parameter for the set of CInputCoins
|
||
* that have been selected.
|
||
* @param CAmount& value_ret -> This is an output parameter for the total value of the CInputCoins
|
||
* that were selected.
|
||
* @param CAmount not_input_fees -> The fees that need to be paid for the outputs and fixed size
|
||
* overhead (version, locktime, marker and flag)
|
||
*/
|
||
|
||
static const size_t TOTAL_TRIES = 100000;
|
||
|
||
bool SelectCoinsBnB(std::vector<OutputGroup>& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set<CInputCoin>& out_set, CAmount& value_ret, CAmount not_input_fees)
|
||
{
|
||
out_set.clear();
|
||
CAmount curr_value = 0;
|
||
|
||
std::vector<bool> curr_selection; // select the utxo at this index
|
||
curr_selection.reserve(utxo_pool.size());
|
||
CAmount actual_target = not_input_fees + target_value;
|
||
|
||
// Calculate curr_available_value
|
||
CAmount curr_available_value = 0;
|
||
for (const OutputGroup& utxo : utxo_pool) {
|
||
// Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it
|
||
assert(utxo.effective_value > 0);
|
||
curr_available_value += utxo.effective_value;
|
||
}
|
||
if (curr_available_value < actual_target) {
|
||
return false;
|
||
}
|
||
|
||
// Sort the utxo_pool
|
||
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
|
||
|
||
CAmount curr_waste = 0;
|
||
std::vector<bool> best_selection;
|
||
CAmount best_waste = MAX_MONEY;
|
||
|
||
// Depth First search loop for choosing the UTXOs
|
||
for (size_t i = 0; i < TOTAL_TRIES; ++i) {
|
||
// Conditions for starting a backtrack
|
||
bool backtrack = false;
|
||
if (curr_value + curr_available_value < actual_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
|
||
curr_value > actual_target + cost_of_change || // Selected value is out of range, go back and try other branch
|
||
(curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing
|
||
backtrack = true;
|
||
} else if (curr_value >= actual_target) { // Selected value is within range
|
||
curr_waste += (curr_value - actual_target); // This is the excess value which is added to the waste for the below comparison
|
||
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
|
||
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
|
||
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
|
||
// explore any more UTXOs to avoid burning money like that.
|
||
if (curr_waste <= best_waste) {
|
||
best_selection = curr_selection;
|
||
best_selection.resize(utxo_pool.size());
|
||
best_waste = curr_waste;
|
||
if (best_waste == 0) {
|
||
break;
|
||
}
|
||
}
|
||
curr_waste -= (curr_value - actual_target); // Remove the excess value as we will be selecting different coins now
|
||
backtrack = true;
|
||
}
|
||
|
||
// Backtracking, moving backwards
|
||
if (backtrack) {
|
||
// Walk backwards to find the last included UTXO that still needs to have its omission branch traversed.
|
||
while (!curr_selection.empty() && !curr_selection.back()) {
|
||
curr_selection.pop_back();
|
||
curr_available_value += utxo_pool.at(curr_selection.size()).effective_value;
|
||
}
|
||
|
||
if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
|
||
break;
|
||
}
|
||
|
||
// Output was included on previous iterations, try excluding now.
|
||
curr_selection.back() = false;
|
||
OutputGroup& utxo = utxo_pool.at(curr_selection.size() - 1);
|
||
curr_value -= utxo.effective_value;
|
||
curr_waste -= utxo.fee - utxo.long_term_fee;
|
||
} else { // Moving forwards, continuing down this branch
|
||
OutputGroup& utxo = utxo_pool.at(curr_selection.size());
|
||
|
||
// Remove this utxo from the curr_available_value utxo amount
|
||
curr_available_value -= utxo.effective_value;
|
||
|
||
// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to
|
||
// long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
|
||
if (!curr_selection.empty() && !curr_selection.back() &&
|
||
utxo.effective_value == utxo_pool.at(curr_selection.size() - 1).effective_value &&
|
||
utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) {
|
||
curr_selection.push_back(false);
|
||
} else {
|
||
// Inclusion branch first (Largest First Exploration)
|
||
curr_selection.push_back(true);
|
||
curr_value += utxo.effective_value;
|
||
curr_waste += utxo.fee - utxo.long_term_fee;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Check for solution
|
||
if (best_selection.empty()) {
|
||
return false;
|
||
}
|
||
|
||
// Set output set
|
||
value_ret = 0;
|
||
for (size_t i = 0; i < best_selection.size(); ++i) {
|
||
if (best_selection.at(i)) {
|
||
util::insert(out_set, utxo_pool.at(i).m_outputs);
|
||
value_ret += utxo_pool.at(i).m_value;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void ApproximateBestSubset(const std::vector<OutputGroup>& groups, const CAmount& nTotalLower, const CAmount& nTargetValue,
|
||
std::vector<char>& vfBest, CAmount& nBest, int iterations = 1000)
|
||
{
|
||
std::vector<char> vfIncluded;
|
||
|
||
vfBest.assign(groups.size(), true);
|
||
nBest = nTotalLower;
|
||
|
||
FastRandomContext insecure_rand;
|
||
|
||
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
|
||
{
|
||
vfIncluded.assign(groups.size(), false);
|
||
CAmount nTotal = 0;
|
||
bool fReachedTarget = false;
|
||
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
|
||
{
|
||
for (unsigned int i = 0; i < groups.size(); i++)
|
||
{
|
||
//The solver here uses a randomized algorithm,
|
||
//the randomness serves no real security purpose but is just
|
||
//needed to prevent degenerate behavior and it is important
|
||
//that the rng is fast. We do not use a constant random sequence,
|
||
//because there may be some privacy improvement by making
|
||
//the selection random.
|
||
if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
|
||
{
|
||
nTotal += groups[i].m_value;
|
||
vfIncluded[i] = true;
|
||
if (nTotal >= nTargetValue)
|
||
{
|
||
fReachedTarget = true;
|
||
if (nTotal < nBest)
|
||
{
|
||
nBest = nTotal;
|
||
vfBest = vfIncluded;
|
||
}
|
||
nTotal -= groups[i].m_value;
|
||
vfIncluded[i] = false;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bool KnapsackSolver(const CAmount& nTargetValue, std::vector<OutputGroup>& groups, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet)
|
||
{
|
||
setCoinsRet.clear();
|
||
nValueRet = 0;
|
||
|
||
// List of values less than target
|
||
Optional<OutputGroup> lowest_larger;
|
||
std::vector<OutputGroup> applicable_groups;
|
||
CAmount nTotalLower = 0;
|
||
|
||
Shuffle(groups.begin(), groups.end(), FastRandomContext());
|
||
|
||
for (const OutputGroup& group : groups) {
|
||
if (group.m_value == nTargetValue) {
|
||
util::insert(setCoinsRet, group.m_outputs);
|
||
nValueRet += group.m_value;
|
||
return true;
|
||
} else if (group.m_value < nTargetValue + MIN_CHANGE) {
|
||
applicable_groups.push_back(group);
|
||
nTotalLower += group.m_value;
|
||
} else if (!lowest_larger || group.m_value < lowest_larger->m_value) {
|
||
lowest_larger = group;
|
||
}
|
||
}
|
||
|
||
if (nTotalLower == nTargetValue) {
|
||
for (const auto& group : applicable_groups) {
|
||
util::insert(setCoinsRet, group.m_outputs);
|
||
nValueRet += group.m_value;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
if (nTotalLower < nTargetValue) {
|
||
if (!lowest_larger) return false;
|
||
util::insert(setCoinsRet, lowest_larger->m_outputs);
|
||
nValueRet += lowest_larger->m_value;
|
||
return true;
|
||
}
|
||
|
||
// Solve subset sum by stochastic approximation
|
||
std::sort(applicable_groups.begin(), applicable_groups.end(), descending);
|
||
std::vector<char> vfBest;
|
||
CAmount nBest;
|
||
|
||
ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue, vfBest, nBest);
|
||
if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE) {
|
||
ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest);
|
||
}
|
||
|
||
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
|
||
// or the next bigger coin is closer), return the bigger coin
|
||
if (lowest_larger &&
|
||
((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || lowest_larger->m_value <= nBest)) {
|
||
util::insert(setCoinsRet, lowest_larger->m_outputs);
|
||
nValueRet += lowest_larger->m_value;
|
||
} else {
|
||
for (unsigned int i = 0; i < applicable_groups.size(); i++) {
|
||
if (vfBest[i]) {
|
||
util::insert(setCoinsRet, applicable_groups[i].m_outputs);
|
||
nValueRet += applicable_groups[i].m_value;
|
||
}
|
||
}
|
||
|
||
if (LogAcceptCategory(BCLog::SELECTCOINS)) {
|
||
LogPrint(BCLog::SELECTCOINS, "SelectCoins() best subset: "); /* Continued */
|
||
for (unsigned int i = 0; i < applicable_groups.size(); i++) {
|
||
if (vfBest[i]) {
|
||
LogPrint(BCLog::SELECTCOINS, "%s ", FormatMoney(applicable_groups[i].m_value)); /* Continued */
|
||
}
|
||
}
|
||
LogPrint(BCLog::SELECTCOINS, "total %s\n", FormatMoney(nBest));
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/******************************************************************************
|
||
|
||
OutputGroup
|
||
|
||
******************************************************************************/
|
||
|
||
void OutputGroup::Insert(const CInputCoin& output, int depth, bool from_me, size_t ancestors, size_t descendants) {
|
||
m_outputs.push_back(output);
|
||
m_from_me &= from_me;
|
||
m_value += output.effective_value;
|
||
m_depth = std::min(m_depth, depth);
|
||
// ancestors here express the number of ancestors the new coin will end up having, which is
|
||
// the sum, rather than the max; this will overestimate in the cases where multiple inputs
|
||
// have common ancestors
|
||
m_ancestors += ancestors;
|
||
// descendants is the count as seen from the top ancestor, not the descendants as seen from the
|
||
// coin itself; thus, this value is counted as the max, not the sum
|
||
m_descendants = std::max(m_descendants, descendants);
|
||
effective_value = m_value;
|
||
}
|
||
|
||
std::vector<CInputCoin>::iterator OutputGroup::Discard(const CInputCoin& output) {
|
||
auto it = m_outputs.begin();
|
||
while (it != m_outputs.end() && it->outpoint != output.outpoint) ++it;
|
||
if (it == m_outputs.end()) return it;
|
||
m_value -= output.effective_value;
|
||
effective_value -= output.effective_value;
|
||
return m_outputs.erase(it);
|
||
}
|
||
|
||
bool OutputGroup::EligibleForSpending(const CoinEligibilityFilter& eligibility_filter) const
|
||
{
|
||
return m_depth >= (m_from_me ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs)
|
||
&& m_ancestors <= eligibility_filter.max_ancestors
|
||
&& m_descendants <= eligibility_filter.max_descendants;
|
||
}
|