mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-15 14:22:37 -03:00
f47dda2c58
-BEGIN VERIFY SCRIPT- ./contrib/devtools/copyright_header.py update ./ -END VERIFY SCRIPT- Commits of previous years: * 2020:fa0074e2d8
* 2019:aaaaad6ac9
456 lines
25 KiB
C++
456 lines
25 KiB
C++
// Copyright (c) 2014-2021 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <chain.h>
|
|
#include <chainparams.h>
|
|
#include <consensus/params.h>
|
|
#include <deploymentstatus.h>
|
|
#include <test/util/setup_common.h>
|
|
#include <validation.h>
|
|
#include <versionbits.h>
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
/* Define a virtual block time, one block per 10 minutes after Nov 14 2014, 0:55:36am */
|
|
static int32_t TestTime(int nHeight) { return 1415926536 + 600 * nHeight; }
|
|
|
|
static const std::string StateName(ThresholdState state)
|
|
{
|
|
switch (state) {
|
|
case ThresholdState::DEFINED: return "DEFINED";
|
|
case ThresholdState::STARTED: return "STARTED";
|
|
case ThresholdState::LOCKED_IN: return "LOCKED_IN";
|
|
case ThresholdState::ACTIVE: return "ACTIVE";
|
|
case ThresholdState::FAILED: return "FAILED";
|
|
} // no default case, so the compiler can warn about missing cases
|
|
return "";
|
|
}
|
|
|
|
static const Consensus::Params paramsDummy = Consensus::Params();
|
|
|
|
class TestConditionChecker : public AbstractThresholdConditionChecker
|
|
{
|
|
private:
|
|
mutable ThresholdConditionCache cache;
|
|
|
|
public:
|
|
int64_t BeginTime(const Consensus::Params& params) const override { return TestTime(10000); }
|
|
int64_t EndTime(const Consensus::Params& params) const override { return TestTime(20000); }
|
|
int Period(const Consensus::Params& params) const override { return 1000; }
|
|
int Threshold(const Consensus::Params& params) const override { return 900; }
|
|
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override { return (pindex->nVersion & 0x100); }
|
|
|
|
ThresholdState GetStateFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache); }
|
|
int GetStateSinceHeightFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, paramsDummy, cache); }
|
|
};
|
|
|
|
class TestDelayedActivationConditionChecker : public TestConditionChecker
|
|
{
|
|
public:
|
|
int MinActivationHeight(const Consensus::Params& params) const override { return 15000; }
|
|
};
|
|
|
|
class TestAlwaysActiveConditionChecker : public TestConditionChecker
|
|
{
|
|
public:
|
|
int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::ALWAYS_ACTIVE; }
|
|
};
|
|
|
|
class TestNeverActiveConditionChecker : public TestConditionChecker
|
|
{
|
|
public:
|
|
int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::NEVER_ACTIVE; }
|
|
};
|
|
|
|
#define CHECKERS 6
|
|
|
|
class VersionBitsTester
|
|
{
|
|
// A fake blockchain
|
|
std::vector<CBlockIndex*> vpblock;
|
|
|
|
// 6 independent checkers for the same bit.
|
|
// The first one performs all checks, the second only 50%, the third only 25%, etc...
|
|
// This is to test whether lack of cached information leads to the same results.
|
|
TestConditionChecker checker[CHECKERS];
|
|
// Another 6 that assume delayed activation
|
|
TestDelayedActivationConditionChecker checker_delayed[CHECKERS];
|
|
// Another 6 that assume always active activation
|
|
TestAlwaysActiveConditionChecker checker_always[CHECKERS];
|
|
// Another 6 that assume never active activation
|
|
TestNeverActiveConditionChecker checker_never[CHECKERS];
|
|
|
|
// Test counter (to identify failures)
|
|
int num{1000};
|
|
|
|
public:
|
|
VersionBitsTester& Reset() {
|
|
// Have each group of tests be counted by the 1000s part, starting at 1000
|
|
num = num - (num % 1000) + 1000;
|
|
|
|
for (unsigned int i = 0; i < vpblock.size(); i++) {
|
|
delete vpblock[i];
|
|
}
|
|
for (unsigned int i = 0; i < CHECKERS; i++) {
|
|
checker[i] = TestConditionChecker();
|
|
checker_delayed[i] = TestDelayedActivationConditionChecker();
|
|
checker_always[i] = TestAlwaysActiveConditionChecker();
|
|
checker_never[i] = TestNeverActiveConditionChecker();
|
|
}
|
|
vpblock.clear();
|
|
return *this;
|
|
}
|
|
|
|
~VersionBitsTester() {
|
|
Reset();
|
|
}
|
|
|
|
VersionBitsTester& Mine(unsigned int height, int32_t nTime, int32_t nVersion) {
|
|
while (vpblock.size() < height) {
|
|
CBlockIndex* pindex = new CBlockIndex();
|
|
pindex->nHeight = vpblock.size();
|
|
pindex->pprev = Tip();
|
|
pindex->nTime = nTime;
|
|
pindex->nVersion = nVersion;
|
|
pindex->BuildSkip();
|
|
vpblock.push_back(pindex);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
VersionBitsTester& TestStateSinceHeight(int height)
|
|
{
|
|
return TestStateSinceHeight(height, height);
|
|
}
|
|
|
|
VersionBitsTester& TestStateSinceHeight(int height, int height_delayed)
|
|
{
|
|
const CBlockIndex* tip = Tip();
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
if (InsecureRandBits(i) == 0) {
|
|
BOOST_CHECK_MESSAGE(checker[i].GetStateSinceHeightFor(tip) == height, strprintf("Test %i for StateSinceHeight", num));
|
|
BOOST_CHECK_MESSAGE(checker_delayed[i].GetStateSinceHeightFor(tip) == height_delayed, strprintf("Test %i for StateSinceHeight (delayed)", num));
|
|
BOOST_CHECK_MESSAGE(checker_always[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (always active)", num));
|
|
BOOST_CHECK_MESSAGE(checker_never[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (never active)", num));
|
|
}
|
|
}
|
|
num++;
|
|
return *this;
|
|
}
|
|
|
|
VersionBitsTester& TestState(ThresholdState exp)
|
|
{
|
|
return TestState(exp, exp);
|
|
}
|
|
|
|
VersionBitsTester& TestState(ThresholdState exp, ThresholdState exp_delayed)
|
|
{
|
|
if (exp != exp_delayed) {
|
|
// only expected differences are that delayed stays in locked_in longer
|
|
BOOST_CHECK_EQUAL(exp, ThresholdState::ACTIVE);
|
|
BOOST_CHECK_EQUAL(exp_delayed, ThresholdState::LOCKED_IN);
|
|
}
|
|
|
|
const CBlockIndex* pindex = Tip();
|
|
for (int i = 0; i < CHECKERS; i++) {
|
|
if (InsecureRandBits(i) == 0) {
|
|
ThresholdState got = checker[i].GetStateFor(pindex);
|
|
ThresholdState got_delayed = checker_delayed[i].GetStateFor(pindex);
|
|
ThresholdState got_always = checker_always[i].GetStateFor(pindex);
|
|
ThresholdState got_never = checker_never[i].GetStateFor(pindex);
|
|
// nHeight of the next block. If vpblock is empty, the next (ie first)
|
|
// block should be the genesis block with nHeight == 0.
|
|
int height = pindex == nullptr ? 0 : pindex->nHeight + 1;
|
|
BOOST_CHECK_MESSAGE(got == exp, strprintf("Test %i for %s height %d (got %s)", num, StateName(exp), height, StateName(got)));
|
|
BOOST_CHECK_MESSAGE(got_delayed == exp_delayed, strprintf("Test %i for %s height %d (got %s; delayed case)", num, StateName(exp_delayed), height, StateName(got_delayed)));
|
|
BOOST_CHECK_MESSAGE(got_always == ThresholdState::ACTIVE, strprintf("Test %i for ACTIVE height %d (got %s; always active case)", num, height, StateName(got_always)));
|
|
BOOST_CHECK_MESSAGE(got_never == ThresholdState::FAILED, strprintf("Test %i for FAILED height %d (got %s; never active case)", num, height, StateName(got_never)));
|
|
}
|
|
}
|
|
num++;
|
|
return *this;
|
|
}
|
|
|
|
VersionBitsTester& TestDefined() { return TestState(ThresholdState::DEFINED); }
|
|
VersionBitsTester& TestStarted() { return TestState(ThresholdState::STARTED); }
|
|
VersionBitsTester& TestLockedIn() { return TestState(ThresholdState::LOCKED_IN); }
|
|
VersionBitsTester& TestActive() { return TestState(ThresholdState::ACTIVE); }
|
|
VersionBitsTester& TestFailed() { return TestState(ThresholdState::FAILED); }
|
|
|
|
// non-delayed should be active; delayed should still be locked in
|
|
VersionBitsTester& TestActiveDelayed() { return TestState(ThresholdState::ACTIVE, ThresholdState::LOCKED_IN); }
|
|
|
|
CBlockIndex* Tip() { return vpblock.empty() ? nullptr : vpblock.back(); }
|
|
};
|
|
|
|
BOOST_FIXTURE_TEST_SUITE(versionbits_tests, TestingSetup)
|
|
|
|
BOOST_AUTO_TEST_CASE(versionbits_test)
|
|
{
|
|
for (int i = 0; i < 64; i++) {
|
|
// DEFINED -> STARTED after timeout reached -> FAILED
|
|
VersionBitsTester().TestDefined().TestStateSinceHeight(0)
|
|
.Mine(1, TestTime(1), 0x100).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(11, TestTime(11), 0x100).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(989, TestTime(989), 0x100).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(999, TestTime(20000), 0x100).TestDefined().TestStateSinceHeight(0) // Timeout and start time reached simultaneously
|
|
.Mine(1000, TestTime(20000), 0).TestStarted().TestStateSinceHeight(1000) // Hit started, stop signalling
|
|
.Mine(1999, TestTime(30001), 0).TestStarted().TestStateSinceHeight(1000)
|
|
.Mine(2000, TestTime(30002), 0x100).TestFailed().TestStateSinceHeight(2000) // Hit failed, start signalling again
|
|
.Mine(2001, TestTime(30003), 0x100).TestFailed().TestStateSinceHeight(2000)
|
|
.Mine(2999, TestTime(30004), 0x100).TestFailed().TestStateSinceHeight(2000)
|
|
.Mine(3000, TestTime(30005), 0x100).TestFailed().TestStateSinceHeight(2000)
|
|
.Mine(4000, TestTime(30006), 0x100).TestFailed().TestStateSinceHeight(2000)
|
|
|
|
// DEFINED -> STARTED -> FAILED
|
|
.Reset().TestDefined().TestStateSinceHeight(0)
|
|
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(1000, TestTime(10000) - 1, 0x100).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
|
|
.Mine(2000, TestTime(10000), 0x100).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
|
|
.Mine(2051, TestTime(10010), 0).TestStarted().TestStateSinceHeight(2000) // 51 old blocks
|
|
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 899 new blocks
|
|
.Mine(3000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(3000) // 50 old blocks (so 899 out of the past 1000)
|
|
.Mine(4000, TestTime(20010), 0x100).TestFailed().TestStateSinceHeight(3000)
|
|
|
|
// DEFINED -> STARTED -> LOCKEDIN after timeout reached -> ACTIVE
|
|
.Reset().TestDefined().TestStateSinceHeight(0)
|
|
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
|
|
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
|
|
.Mine(2999, TestTime(30000), 0x100).TestStarted().TestStateSinceHeight(2000) // 999 new blocks
|
|
.Mine(3000, TestTime(30000), 0x100).TestLockedIn().TestStateSinceHeight(3000) // 1 new block (so 1000 out of the past 1000 are new)
|
|
.Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
|
|
.Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
|
|
.Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
|
|
.Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
|
|
|
|
// DEFINED -> STARTED -> LOCKEDIN before timeout -> ACTIVE
|
|
.Reset().TestDefined()
|
|
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
|
|
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
|
|
.Mine(2050, TestTime(10010), 0x200).TestStarted().TestStateSinceHeight(2000) // 50 old blocks
|
|
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 900 new blocks
|
|
.Mine(2999, TestTime(19999), 0x200).TestStarted().TestStateSinceHeight(2000) // 49 old blocks
|
|
.Mine(3000, TestTime(29999), 0x200).TestLockedIn().TestStateSinceHeight(3000) // 1 old block (so 900 out of the past 1000)
|
|
.Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
|
|
.Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) // delayed will not become active until height=15000
|
|
.Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
|
|
.Mine(15000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
|
|
.Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
|
|
|
|
// DEFINED multiple periods -> STARTED multiple periods -> FAILED
|
|
.Reset().TestDefined().TestStateSinceHeight(0)
|
|
.Mine(999, TestTime(999), 0).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(1000, TestTime(1000), 0).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(2000, TestTime(2000), 0).TestDefined().TestStateSinceHeight(0)
|
|
.Mine(3000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
|
|
.Mine(4000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
|
|
.Mine(5000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
|
|
.Mine(5999, TestTime(20000), 0).TestStarted().TestStateSinceHeight(3000)
|
|
.Mine(6000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(6000)
|
|
.Mine(7000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000)
|
|
.Mine(24000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000) // stay in FAILED no matter how much we signal
|
|
;
|
|
}
|
|
}
|
|
|
|
/** Check that ComputeBlockVersion will set the appropriate bit correctly */
|
|
static void check_computeblockversion(const Consensus::Params& params, Consensus::DeploymentPos dep)
|
|
{
|
|
// This implicitly uses g_versionbitscache, so clear it every time
|
|
g_versionbitscache.Clear();
|
|
|
|
int64_t bit = params.vDeployments[dep].bit;
|
|
int64_t nStartTime = params.vDeployments[dep].nStartTime;
|
|
int64_t nTimeout = params.vDeployments[dep].nTimeout;
|
|
int min_activation_height = params.vDeployments[dep].min_activation_height;
|
|
|
|
// should not be any signalling for first block
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(nullptr, params), VERSIONBITS_TOP_BITS);
|
|
|
|
// always/never active deployments shouldn't need to be tested further
|
|
if (nStartTime == Consensus::BIP9Deployment::ALWAYS_ACTIVE ||
|
|
nStartTime == Consensus::BIP9Deployment::NEVER_ACTIVE)
|
|
{
|
|
BOOST_CHECK_EQUAL(min_activation_height, 0);
|
|
return;
|
|
}
|
|
|
|
BOOST_REQUIRE(nStartTime < nTimeout);
|
|
BOOST_REQUIRE(nStartTime >= 0);
|
|
BOOST_REQUIRE(nTimeout <= std::numeric_limits<uint32_t>::max() || nTimeout == Consensus::BIP9Deployment::NO_TIMEOUT);
|
|
BOOST_REQUIRE(0 <= bit && bit < 32);
|
|
// Make sure that no deployment tries to set an invalid bit.
|
|
BOOST_REQUIRE(((1 << bit) & VERSIONBITS_TOP_MASK) == 0);
|
|
BOOST_REQUIRE(min_activation_height >= 0);
|
|
// Check min_activation_height is on a retarget boundary
|
|
BOOST_REQUIRE_EQUAL(min_activation_height % params.nMinerConfirmationWindow, 0U);
|
|
|
|
const uint32_t bitmask{g_versionbitscache.Mask(params, dep)};
|
|
BOOST_CHECK_EQUAL(bitmask, uint32_t{1} << bit);
|
|
|
|
// In the first chain, test that the bit is set by CBV until it has failed.
|
|
// In the second chain, test the bit is set by CBV while STARTED and
|
|
// LOCKED-IN, and then no longer set while ACTIVE.
|
|
VersionBitsTester firstChain, secondChain;
|
|
|
|
int64_t nTime = nStartTime;
|
|
|
|
const CBlockIndex *lastBlock = nullptr;
|
|
|
|
// Before MedianTimePast of the chain has crossed nStartTime, the bit
|
|
// should not be set.
|
|
if (nTime == 0) {
|
|
// since CBlockIndex::nTime is uint32_t we can't represent any
|
|
// earlier time, so will transition from DEFINED to STARTED at the
|
|
// end of the first period by mining blocks at nTime == 0
|
|
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
|
|
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
// then we'll keep mining at nStartTime...
|
|
} else {
|
|
// use a time 1s earlier than start time to check we stay DEFINED
|
|
--nTime;
|
|
|
|
// Start generating blocks before nStartTime
|
|
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
|
|
|
|
// Mine more blocks (4 less than the adjustment period) at the old time, and check that CBV isn't setting the bit yet.
|
|
for (uint32_t i = 1; i < params.nMinerConfirmationWindow - 4; i++) {
|
|
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
|
|
}
|
|
// Now mine 5 more blocks at the start time -- MTP should not have passed yet, so
|
|
// CBV should still not yet set the bit.
|
|
nTime = nStartTime;
|
|
for (uint32_t i = params.nMinerConfirmationWindow - 4; i <= params.nMinerConfirmationWindow; i++) {
|
|
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
|
|
}
|
|
// Next we will advance to the next period and transition to STARTED,
|
|
}
|
|
|
|
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
// so ComputeBlockVersion should now set the bit,
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
// and should also be using the VERSIONBITS_TOP_BITS.
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
|
|
|
|
// Check that ComputeBlockVersion will set the bit until nTimeout
|
|
nTime += 600;
|
|
uint32_t blocksToMine = params.nMinerConfirmationWindow * 2; // test blocks for up to 2 time periods
|
|
uint32_t nHeight = params.nMinerConfirmationWindow * 3;
|
|
// These blocks are all before nTimeout is reached.
|
|
while (nTime < nTimeout && blocksToMine > 0) {
|
|
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
|
|
blocksToMine--;
|
|
nTime += 600;
|
|
nHeight += 1;
|
|
}
|
|
|
|
if (nTimeout != Consensus::BIP9Deployment::NO_TIMEOUT) {
|
|
// can reach any nTimeout other than NO_TIMEOUT due to earlier BOOST_REQUIRE
|
|
|
|
nTime = nTimeout;
|
|
|
|
// finish the last period before we start timing out
|
|
while (nHeight % params.nMinerConfirmationWindow != 0) {
|
|
lastBlock = firstChain.Mine(nHeight+1, nTime - 1, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
nHeight += 1;
|
|
}
|
|
|
|
// FAILED is only triggered at the end of a period, so CBV should be setting
|
|
// the bit until the period transition.
|
|
for (uint32_t i = 0; i < params.nMinerConfirmationWindow - 1; i++) {
|
|
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
nHeight += 1;
|
|
}
|
|
// The next block should trigger no longer setting the bit.
|
|
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
|
|
}
|
|
|
|
// On a new chain:
|
|
// verify that the bit will be set after lock-in, and then stop being set
|
|
// after activation.
|
|
nTime = nStartTime;
|
|
|
|
// Mine one period worth of blocks, and check that the bit will be on for the
|
|
// next period.
|
|
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
|
|
// Mine another period worth of blocks, signaling the new bit.
|
|
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 2, nTime, VERSIONBITS_TOP_BITS | (1<<bit)).Tip();
|
|
// After one period of setting the bit on each block, it should have locked in.
|
|
// We keep setting the bit for one more period though, until activation.
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
|
|
// Now check that we keep mining the block until the end of this period, and
|
|
// then stop at the beginning of the next period.
|
|
lastBlock = secondChain.Mine((params.nMinerConfirmationWindow * 3) - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
|
|
if (lastBlock->nHeight + 1 < min_activation_height) {
|
|
// check signalling continues while min_activation_height is not reached
|
|
lastBlock = secondChain.Mine(min_activation_height - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
|
|
// then reach min_activation_height, which was already REQUIRE'd to start a new period
|
|
lastBlock = secondChain.Mine(min_activation_height, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
|
|
}
|
|
|
|
// Check that we don't signal after activation
|
|
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(versionbits_computeblockversion)
|
|
{
|
|
// check that any deployment on any chain can conceivably reach both
|
|
// ACTIVE and FAILED states in roughly the way we expect
|
|
for (const auto& chain_name : {CBaseChainParams::MAIN, CBaseChainParams::TESTNET, CBaseChainParams::SIGNET, CBaseChainParams::REGTEST}) {
|
|
const auto chainParams = CreateChainParams(*m_node.args, chain_name);
|
|
uint32_t chain_all_vbits{0};
|
|
for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; ++i) {
|
|
const auto dep = static_cast<Consensus::DeploymentPos>(i);
|
|
// Check that no bits are re-used (within the same chain). This is
|
|
// disallowed because the transition to FAILED (on timeout) does
|
|
// not take precedence over STARTED/LOCKED_IN. So all softforks on
|
|
// the same bit might overlap, even when non-overlapping start-end
|
|
// times are picked.
|
|
const uint32_t dep_mask{g_versionbitscache.Mask(chainParams->GetConsensus(), dep)};
|
|
BOOST_CHECK(!(chain_all_vbits & dep_mask));
|
|
chain_all_vbits |= dep_mask;
|
|
check_computeblockversion(chainParams->GetConsensus(), dep);
|
|
}
|
|
}
|
|
|
|
{
|
|
// Use regtest/testdummy to ensure we always exercise some
|
|
// deployment that's not always/never active
|
|
ArgsManager args;
|
|
args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999"); // January 1, 2008 - December 31, 2008
|
|
const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST);
|
|
check_computeblockversion(chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY);
|
|
}
|
|
|
|
{
|
|
// Use regtest/testdummy to ensure we always exercise the
|
|
// min_activation_height test, even if we're not using that in a
|
|
// live deployment
|
|
ArgsManager args;
|
|
args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999:403200"); // January 1, 2008 - December 31, 2008, min act height 403200
|
|
const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST);
|
|
check_computeblockversion(chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY);
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|