bitcoin/sha.cpp
sirius-m e071a3f6c0 First commit
git-svn-id: https://bitcoin.svn.sourceforge.net/svnroot/bitcoin/trunk@1 1a98c847-1fd6-4fd8-948a-caf3550aa51b
2009-08-30 03:46:39 +00:00

554 lines
19 KiB
C++

// This file is public domain
// SHA routines extracted as a standalone file from:
// Crypto++: a C++ Class Library of Cryptographic Schemes
// Version 5.5.2 (9/24/2007)
// http://www.cryptopp.com
// sha.cpp - modified by Wei Dai from Steve Reid's public domain sha1.c
// Steve Reid implemented SHA-1. Wei Dai implemented SHA-2.
// Both are in the public domain.
#include <assert.h>
#include <memory.h>
#include "sha.h"
namespace CryptoPP
{
// start of Steve Reid's code
#define blk0(i) (W[i] = data[i])
#define blk1(i) (W[i&15] = rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))
void SHA1::InitState(HashWordType *state)
{
state[0] = 0x67452301L;
state[1] = 0xEFCDAB89L;
state[2] = 0x98BADCFEL;
state[3] = 0x10325476L;
state[4] = 0xC3D2E1F0L;
}
#define f1(x,y,z) (z^(x&(y^z)))
#define f2(x,y,z) (x^y^z)
#define f3(x,y,z) ((x&y)|(z&(x|y)))
#define f4(x,y,z) (x^y^z)
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
#define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
#define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rotlFixed(v,5);w=rotlFixed(w,30);
#define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlFixed(v,5);w=rotlFixed(w,30);
#define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlFixed(v,5);w=rotlFixed(w,30);
void SHA1::Transform(word32 *state, const word32 *data)
{
word32 W[16];
/* Copy context->state[] to working vars */
word32 a = state[0];
word32 b = state[1];
word32 c = state[2];
word32 d = state[3];
word32 e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
// end of Steve Reid's code
// *************************************************************
void SHA224::InitState(HashWordType *state)
{
static const word32 s[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
memcpy(state, s, sizeof(s));
}
void SHA256::InitState(HashWordType *state)
{
static const word32 s[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
memcpy(state, s, sizeof(s));
}
static const word32 SHA256_K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) ((x&y)|(z&(x|y)))
#define a(i) T[(0-i)&7]
#define b(i) T[(1-i)&7]
#define c(i) T[(2-i)&7]
#define d(i) T[(3-i)&7]
#define e(i) T[(4-i)&7]
#define f(i) T[(5-i)&7]
#define g(i) T[(6-i)&7]
#define h(i) T[(7-i)&7]
#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\
d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))
// for SHA256
#define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22))
#define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25))
#define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3))
#define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10))
void SHA256::Transform(word32 *state, const word32 *data)
{
word32 W[16];
word32 T[8];
/* Copy context->state[] to working vars */
memcpy(T, state, sizeof(T));
/* 64 operations, partially loop unrolled */
for (unsigned int j=0; j<64; j+=16)
{
R( 0); R( 1); R( 2); R( 3);
R( 4); R( 5); R( 6); R( 7);
R( 8); R( 9); R(10); R(11);
R(12); R(13); R(14); R(15);
}
/* Add the working vars back into context.state[] */
state[0] += a(0);
state[1] += b(0);
state[2] += c(0);
state[3] += d(0);
state[4] += e(0);
state[5] += f(0);
state[6] += g(0);
state[7] += h(0);
}
/*
// smaller but slower
void SHA256_Transform(word32 *state, const word32 *data)
{
word32 T[20];
word32 W[32];
unsigned int i = 0, j = 0;
word32 *t = T+8;
memcpy(t, state, 8*4);
word32 e = t[4], a = t[0];
do
{
word32 w = data[j];
W[j] = w;
w += K[j];
w += t[7];
w += S1(e);
w += Ch(e, t[5], t[6]);
e = t[3] + w;
t[3] = t[3+8] = e;
w += S0(t[0]);
a = w + Maj(a, t[1], t[2]);
t[-1] = t[7] = a;
--t;
++j;
if (j%8 == 0)
t += 8;
} while (j<16);
do
{
i = j&0xf;
word32 w = s1(W[i+16-2]) + s0(W[i+16-15]) + W[i] + W[i+16-7];
W[i+16] = W[i] = w;
w += K[j];
w += t[7];
w += S1(e);
w += Ch(e, t[5], t[6]);
e = t[3] + w;
t[3] = t[3+8] = e;
w += S0(t[0]);
a = w + Maj(a, t[1], t[2]);
t[-1] = t[7] = a;
w = s1(W[(i+1)+16-2]) + s0(W[(i+1)+16-15]) + W[(i+1)] + W[(i+1)+16-7];
W[(i+1)+16] = W[(i+1)] = w;
w += K[j+1];
w += (t-1)[7];
w += S1(e);
w += Ch(e, (t-1)[5], (t-1)[6]);
e = (t-1)[3] + w;
(t-1)[3] = (t-1)[3+8] = e;
w += S0((t-1)[0]);
a = w + Maj(a, (t-1)[1], (t-1)[2]);
(t-1)[-1] = (t-1)[7] = a;
t-=2;
j+=2;
if (j%8 == 0)
t += 8;
} while (j<64);
state[0] += a;
state[1] += t[1];
state[2] += t[2];
state[3] += t[3];
state[4] += e;
state[5] += t[5];
state[6] += t[6];
state[7] += t[7];
}
*/
#undef S0
#undef S1
#undef s0
#undef s1
#undef R
// *************************************************************
#ifdef WORD64_AVAILABLE
void SHA384::InitState(HashWordType *state)
{
static const word64 s[8] = {
W64LIT(0xcbbb9d5dc1059ed8), W64LIT(0x629a292a367cd507),
W64LIT(0x9159015a3070dd17), W64LIT(0x152fecd8f70e5939),
W64LIT(0x67332667ffc00b31), W64LIT(0x8eb44a8768581511),
W64LIT(0xdb0c2e0d64f98fa7), W64LIT(0x47b5481dbefa4fa4)};
memcpy(state, s, sizeof(s));
}
void SHA512::InitState(HashWordType *state)
{
static const word64 s[8] = {
W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b),
W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1),
W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f),
W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)};
memcpy(state, s, sizeof(s));
}
CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = {
W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd),
W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc),
W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019),
W64LIT(0x923f82a4af194f9b), W64LIT(0xab1c5ed5da6d8118),
W64LIT(0xd807aa98a3030242), W64LIT(0x12835b0145706fbe),
W64LIT(0x243185be4ee4b28c), W64LIT(0x550c7dc3d5ffb4e2),
W64LIT(0x72be5d74f27b896f), W64LIT(0x80deb1fe3b1696b1),
W64LIT(0x9bdc06a725c71235), W64LIT(0xc19bf174cf692694),
W64LIT(0xe49b69c19ef14ad2), W64LIT(0xefbe4786384f25e3),
W64LIT(0x0fc19dc68b8cd5b5), W64LIT(0x240ca1cc77ac9c65),
W64LIT(0x2de92c6f592b0275), W64LIT(0x4a7484aa6ea6e483),
W64LIT(0x5cb0a9dcbd41fbd4), W64LIT(0x76f988da831153b5),
W64LIT(0x983e5152ee66dfab), W64LIT(0xa831c66d2db43210),
W64LIT(0xb00327c898fb213f), W64LIT(0xbf597fc7beef0ee4),
W64LIT(0xc6e00bf33da88fc2), W64LIT(0xd5a79147930aa725),
W64LIT(0x06ca6351e003826f), W64LIT(0x142929670a0e6e70),
W64LIT(0x27b70a8546d22ffc), W64LIT(0x2e1b21385c26c926),
W64LIT(0x4d2c6dfc5ac42aed), W64LIT(0x53380d139d95b3df),
W64LIT(0x650a73548baf63de), W64LIT(0x766a0abb3c77b2a8),
W64LIT(0x81c2c92e47edaee6), W64LIT(0x92722c851482353b),
W64LIT(0xa2bfe8a14cf10364), W64LIT(0xa81a664bbc423001),
W64LIT(0xc24b8b70d0f89791), W64LIT(0xc76c51a30654be30),
W64LIT(0xd192e819d6ef5218), W64LIT(0xd69906245565a910),
W64LIT(0xf40e35855771202a), W64LIT(0x106aa07032bbd1b8),
W64LIT(0x19a4c116b8d2d0c8), W64LIT(0x1e376c085141ab53),
W64LIT(0x2748774cdf8eeb99), W64LIT(0x34b0bcb5e19b48a8),
W64LIT(0x391c0cb3c5c95a63), W64LIT(0x4ed8aa4ae3418acb),
W64LIT(0x5b9cca4f7763e373), W64LIT(0x682e6ff3d6b2b8a3),
W64LIT(0x748f82ee5defb2fc), W64LIT(0x78a5636f43172f60),
W64LIT(0x84c87814a1f0ab72), W64LIT(0x8cc702081a6439ec),
W64LIT(0x90befffa23631e28), W64LIT(0xa4506cebde82bde9),
W64LIT(0xbef9a3f7b2c67915), W64LIT(0xc67178f2e372532b),
W64LIT(0xca273eceea26619c), W64LIT(0xd186b8c721c0c207),
W64LIT(0xeada7dd6cde0eb1e), W64LIT(0xf57d4f7fee6ed178),
W64LIT(0x06f067aa72176fba), W64LIT(0x0a637dc5a2c898a6),
W64LIT(0x113f9804bef90dae), W64LIT(0x1b710b35131c471b),
W64LIT(0x28db77f523047d84), W64LIT(0x32caab7b40c72493),
W64LIT(0x3c9ebe0a15c9bebc), W64LIT(0x431d67c49c100d4c),
W64LIT(0x4cc5d4becb3e42b6), W64LIT(0x597f299cfc657e2a),
W64LIT(0x5fcb6fab3ad6faec), W64LIT(0x6c44198c4a475817)
};
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
// put assembly version in separate function, otherwise MSVC 2005 SP1 doesn't generate correct code for the non-assembly version
CRYPTOPP_NAKED static void CRYPTOPP_FASTCALL SHA512_SSE2_Transform(word64 *state, const word64 *data)
{
#ifdef __GNUC__
__asm__ __volatile__
(
".intel_syntax noprefix;"
AS1( push ebx)
AS2( mov ebx, eax)
#else
AS1( push ebx)
AS1( push esi)
AS1( push edi)
AS2( lea ebx, SHA512_K)
#endif
AS2( mov eax, esp)
AS2( and esp, 0xfffffff0)
AS2( sub esp, 27*16) // 17*16 for expanded data, 20*8 for state
AS1( push eax)
AS2( xor eax, eax)
AS2( lea edi, [esp+4+8*8]) // start at middle of state buffer. will decrement pointer each round to avoid copying
AS2( lea esi, [esp+4+20*8+8]) // 16-byte alignment, then add 8
AS2( movq mm4, [ecx+0*8])
AS2( movq [edi+0*8], mm4)
AS2( movq mm0, [ecx+1*8])
AS2( movq [edi+1*8], mm0)
AS2( movq mm0, [ecx+2*8])
AS2( movq [edi+2*8], mm0)
AS2( movq mm0, [ecx+3*8])
AS2( movq [edi+3*8], mm0)
AS2( movq mm5, [ecx+4*8])
AS2( movq [edi+4*8], mm5)
AS2( movq mm0, [ecx+5*8])
AS2( movq [edi+5*8], mm0)
AS2( movq mm0, [ecx+6*8])
AS2( movq [edi+6*8], mm0)
AS2( movq mm0, [ecx+7*8])
AS2( movq [edi+7*8], mm0)
ASJ( jmp, 0, f)
#define SSE2_S0_S1(r, a, b, c) \
AS2( movq mm6, r)\
AS2( psrlq r, a)\
AS2( movq mm7, r)\
AS2( psllq mm6, 64-c)\
AS2( pxor mm7, mm6)\
AS2( psrlq r, b-a)\
AS2( pxor mm7, r)\
AS2( psllq mm6, c-b)\
AS2( pxor mm7, mm6)\
AS2( psrlq r, c-b)\
AS2( pxor r, mm7)\
AS2( psllq mm6, b-a)\
AS2( pxor r, mm6)
#define SSE2_s0(r, a, b, c) \
AS2( movdqa xmm6, r)\
AS2( psrlq r, a)\
AS2( movdqa xmm7, r)\
AS2( psllq xmm6, 64-c)\
AS2( pxor xmm7, xmm6)\
AS2( psrlq r, b-a)\
AS2( pxor xmm7, r)\
AS2( psrlq r, c-b)\
AS2( pxor r, xmm7)\
AS2( psllq xmm6, c-a)\
AS2( pxor r, xmm6)
#define SSE2_s1(r, a, b, c) \
AS2( movdqa xmm6, r)\
AS2( psrlq r, a)\
AS2( movdqa xmm7, r)\
AS2( psllq xmm6, 64-c)\
AS2( pxor xmm7, xmm6)\
AS2( psrlq r, b-a)\
AS2( pxor xmm7, r)\
AS2( psllq xmm6, c-b)\
AS2( pxor xmm7, xmm6)\
AS2( psrlq r, c-b)\
AS2( pxor r, xmm7)
ASL(SHA512_Round)
// k + w is in mm0, a is in mm4, e is in mm5
AS2( paddq mm0, [edi+7*8]) // h
AS2( movq mm2, [edi+5*8]) // f
AS2( movq mm3, [edi+6*8]) // g
AS2( pxor mm2, mm3)
AS2( pand mm2, mm5)
SSE2_S0_S1(mm5,14,18,41)
AS2( pxor mm2, mm3)
AS2( paddq mm0, mm2) // h += Ch(e,f,g)
AS2( paddq mm5, mm0) // h += S1(e)
AS2( movq mm2, [edi+1*8]) // b
AS2( movq mm1, mm2)
AS2( por mm2, mm4)
AS2( pand mm2, [edi+2*8]) // c
AS2( pand mm1, mm4)
AS2( por mm1, mm2)
AS2( paddq mm1, mm5) // temp = h + Maj(a,b,c)
AS2( paddq mm5, [edi+3*8]) // e = d + h
AS2( movq [edi+3*8], mm5)
AS2( movq [edi+11*8], mm5)
SSE2_S0_S1(mm4,28,34,39) // S0(a)
AS2( paddq mm4, mm1) // a = temp + S0(a)
AS2( movq [edi-8], mm4)
AS2( movq [edi+7*8], mm4)
AS1( ret)
// first 16 rounds
ASL(0)
AS2( movq mm0, [edx+eax*8])
AS2( movq [esi+eax*8], mm0)
AS2( movq [esi+eax*8+16*8], mm0)
AS2( paddq mm0, [ebx+eax*8])
ASC( call, SHA512_Round)
AS1( inc eax)
AS2( sub edi, 8)
AS2( test eax, 7)
ASJ( jnz, 0, b)
AS2( add edi, 8*8)
AS2( cmp eax, 16)
ASJ( jne, 0, b)
// rest of the rounds
AS2( movdqu xmm0, [esi+(16-2)*8])
ASL(1)
// data expansion, W[i-2] already in xmm0
AS2( movdqu xmm3, [esi])
AS2( paddq xmm3, [esi+(16-7)*8])
AS2( movdqa xmm2, [esi+(16-15)*8])
SSE2_s1(xmm0, 6, 19, 61)
AS2( paddq xmm0, xmm3)
SSE2_s0(xmm2, 1, 7, 8)
AS2( paddq xmm0, xmm2)
AS2( movdq2q mm0, xmm0)
AS2( movhlps xmm1, xmm0)
AS2( paddq mm0, [ebx+eax*8])
AS2( movlps [esi], xmm0)
AS2( movlps [esi+8], xmm1)
AS2( movlps [esi+8*16], xmm0)
AS2( movlps [esi+8*17], xmm1)
// 2 rounds
ASC( call, SHA512_Round)
AS2( sub edi, 8)
AS2( movdq2q mm0, xmm1)
AS2( paddq mm0, [ebx+eax*8+8])
ASC( call, SHA512_Round)
// update indices and loop
AS2( add esi, 16)
AS2( add eax, 2)
AS2( sub edi, 8)
AS2( test eax, 7)
ASJ( jnz, 1, b)
// do housekeeping every 8 rounds
AS2( mov esi, 0xf)
AS2( and esi, eax)
AS2( lea esi, [esp+4+20*8+8+esi*8])
AS2( add edi, 8*8)
AS2( cmp eax, 80)
ASJ( jne, 1, b)
#define SSE2_CombineState(i) \
AS2( movq mm0, [edi+i*8])\
AS2( paddq mm0, [ecx+i*8])\
AS2( movq [ecx+i*8], mm0)
SSE2_CombineState(0)
SSE2_CombineState(1)
SSE2_CombineState(2)
SSE2_CombineState(3)
SSE2_CombineState(4)
SSE2_CombineState(5)
SSE2_CombineState(6)
SSE2_CombineState(7)
AS1( pop esp)
AS1( emms)
#if defined(__GNUC__)
AS1( pop ebx)
".att_syntax prefix;"
:
: "a" (SHA512_K), "c" (state), "d" (data)
: "%esi", "%edi", "memory", "cc"
);
#else
AS1( pop edi)
AS1( pop esi)
AS1( pop ebx)
AS1( ret)
#endif
}
#endif // #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
void SHA512::Transform(word64 *state, const word64 *data)
{
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
if (HasSSE2())
{
SHA512_SSE2_Transform(state, data);
return;
}
#endif
#define S0(x) (rotrFixed(x,28)^rotrFixed(x,34)^rotrFixed(x,39))
#define S1(x) (rotrFixed(x,14)^rotrFixed(x,18)^rotrFixed(x,41))
#define s0(x) (rotrFixed(x,1)^rotrFixed(x,8)^(x>>7))
#define s1(x) (rotrFixed(x,19)^rotrFixed(x,61)^(x>>6))
#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+(j?blk2(i):blk0(i));\
d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))
word64 W[16];
word64 T[8];
/* Copy context->state[] to working vars */
memcpy(T, state, sizeof(T));
/* 80 operations, partially loop unrolled */
for (unsigned int j=0; j<80; j+=16)
{
R( 0); R( 1); R( 2); R( 3);
R( 4); R( 5); R( 6); R( 7);
R( 8); R( 9); R(10); R(11);
R(12); R(13); R(14); R(15);
}
/* Add the working vars back into context.state[] */
state[0] += a(0);
state[1] += b(0);
state[2] += c(0);
state[3] += d(0);
state[4] += e(0);
state[5] += f(0);
state[6] += g(0);
state[7] += h(0);
}
#endif
}