mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-04-29 14:59:39 -04:00
0cdc758a563 Merge bitcoin-core/secp256k1#1631: release: prepare for 0.6.0 39d5dfd542a release: prepare for 0.6.0 df2eceb2790 build: add ellswift.md and musig.md to release tarball a306bb7e903 tools: fix check-abi.sh after cmake out locations were changed 145868a84d2 Do not export `secp256k1_musig_nonce_gen_internal` b161bffb8bf Merge bitcoin-core/secp256k1#1579: Clear sensitive memory without getting optimized out (revival of #636) a38d879a1a6 Merge bitcoin-core/secp256k1#1628: Name public API structs 7d48f5ed02e Merge bitcoin-core/secp256k1#1581: test, ci: Lower default iteration count to 16 694342fdb71 Name public API structs 0f73caf7c62 test, ci: Lower default iteration count to 16 9a8db52f4e9 Merge bitcoin-core/secp256k1#1582: cmake, test: Add `secp256k1_` prefix to test names 765ef53335a Clear _gej instances after point multiplication to avoid potential leaks 349e6ab916b Introduce separate _clear functions for hash module 99cc9fd6d01 Don't rely on memset to set signed integers to 0 97c57f42ba8 Implement various _clear() functions with secp256k1_memclear() 9bb368d1466 Use secp256k1_memclear() to clear stack memory instead of memset() e3497bbf001 Separate between clearing memory and setting to zero in tests d79a6ccd43a Separate secp256k1_fe_set_int( . , 0 ) from secp256k1_fe_clear() 1c081262227 Add secp256k1_memclear() for clearing secret data 1464f15c812 Merge bitcoin-core/secp256k1#1625: util: Remove unused (u)int64_t formatting macros 980c08df80a util: Remove unused (u)int64_t formatting macros 9b7c59cbb90 Merge bitcoin-core/secp256k1#1624: ci: Update macOS image 096e3e23f63 ci: Update macOS image e7d384488e8 Don't clear secrets in pippenger implementation 68b55209f1b Merge bitcoin-core/secp256k1#1619: musig: ctimetests: fix _declassify range for generated nonce points f0868a9b3d8 Merge bitcoin-core/secp256k1#1595: build: 45839th attempt to fix symbol visibility on Windows 1fae76f50c0 Merge bitcoin-core/secp256k1#1620: Remove unused scratch space from API 8be3839fb2e Remove unused scratch space from API 57eda3ba300 musig: ctimetests: fix _declassify range for generated nonce points 87384f5c0f2 cmake, test: Add `secp256k1_` prefix to test names e59158b6eb7 Merge bitcoin-core/secp256k1#1553: cmake: Set top-level target output locations 18f9b967c25 Merge bitcoin-core/secp256k1#1616: examples: do not retry generating seckey randomness in musig 5bab8f6d3c4 examples: make key generation doc consistent e8908221a45 examples: do not retry generating seckey randomness in musig 70b6be1834e extrakeys: improve doc of keypair_create (don't suggest retry) 01b5893389e Merge bitcoin-core/secp256k1#1599: #1570 improve examples: remove key generation loop cd4f84f3ba8 Improve examples/documentation: remove key generation loops a88aa935063 Merge bitcoin-core/secp256k1#1603: f can never equal -m 3660fe5e2a9 Merge bitcoin-core/secp256k1#1479: Add module "musig" that implements MuSig2 multi-signatures (BIP 327) 168c92011f5 build: allow enabling the musig module in cmake f411841a46b Add module "musig" that implements MuSig2 multi-signatures (BIP 327) 0be79660f38 util: add constant-time is_zero_array function c8fbdb1b972 group: add ge_to_bytes_ext and ge_from_bytes_ext ef7ff03407f f can never equal -m c232486d84e Revert "cmake: Set `ENVIRONMENT` property for examples on Windows" 26e4a7c2146 cmake: Set top-level target output locations 4c57c7a5a95 Merge bitcoin-core/secp256k1#1554: cmake: Clean up testing code 447334cb06d include: Avoid visibility("default") on Windows 472faaa8ee6 Merge bitcoin-core/secp256k1#1604: doc: fix typos in `secp256k1_ecdsa_{recoverable_,}signature` API description 292310fbb24 doc: fix typos in `secp256k1_ecdsa_{recoverable_,}signature` API description 85e224dd97f group: add ge_to_bytes and ge_from_bytes 7c987ec89e6 cmake: Call `enable_testing()` unconditionally 6aa576515ef cmake: Delete `CTest` module git-subtree-dir: src/secp256k1 git-subtree-split: 0cdc758a56360bf58a851fe91085a327ec97685a
816 lines
28 KiB
C
816 lines
28 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
***********************************************************************/
|
|
|
|
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
|
|
#define SECP256K1_SCALAR_REPR_IMPL_H
|
|
|
|
#include "checkmem.h"
|
|
#include "modinv32_impl.h"
|
|
#include "util.h"
|
|
|
|
/* Limbs of the secp256k1 order. */
|
|
#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
|
|
#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
|
|
#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
|
|
#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
|
|
#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
|
|
#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
|
|
#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
|
|
#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)
|
|
|
|
/* Limbs of 2^256 minus the secp256k1 order. */
|
|
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
|
|
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
|
|
#define SECP256K1_N_C_2 (~SECP256K1_N_2)
|
|
#define SECP256K1_N_C_3 (~SECP256K1_N_3)
|
|
#define SECP256K1_N_C_4 (1)
|
|
|
|
/* Limbs of half the secp256k1 order. */
|
|
#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
|
|
#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
|
|
#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
|
|
#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
|
|
#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
|
|
#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
|
|
#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
|
|
#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
|
|
|
|
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
|
|
r->d[0] = v;
|
|
r->d[1] = 0;
|
|
r->d[2] = 0;
|
|
r->d[3] = 0;
|
|
r->d[4] = 0;
|
|
r->d[5] = 0;
|
|
r->d[6] = 0;
|
|
r->d[7] = 0;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
VERIFY_CHECK(count > 0 && count <= 32);
|
|
VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
|
|
|
|
return (a->d[offset >> 5] >> (offset & 0x1F)) & (0xFFFFFFFF >> (32 - count));
|
|
}
|
|
|
|
SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
VERIFY_CHECK(count > 0 && count <= 32);
|
|
VERIFY_CHECK(offset + count <= 256);
|
|
|
|
if ((offset + count - 1) >> 5 == offset >> 5) {
|
|
return secp256k1_scalar_get_bits_limb32(a, offset, count);
|
|
} else {
|
|
VERIFY_CHECK((offset >> 5) + 1 < 8);
|
|
return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & (0xFFFFFFFF >> (32 - count));
|
|
}
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
|
|
int yes = 0;
|
|
int no = 0;
|
|
no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
|
|
no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
|
|
no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
|
|
no |= (a->d[4] < SECP256K1_N_4);
|
|
yes |= (a->d[4] > SECP256K1_N_4) & ~no;
|
|
no |= (a->d[3] < SECP256K1_N_3) & ~yes;
|
|
yes |= (a->d[3] > SECP256K1_N_3) & ~no;
|
|
no |= (a->d[2] < SECP256K1_N_2) & ~yes;
|
|
yes |= (a->d[2] > SECP256K1_N_2) & ~no;
|
|
no |= (a->d[1] < SECP256K1_N_1) & ~yes;
|
|
yes |= (a->d[1] > SECP256K1_N_1) & ~no;
|
|
yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
|
|
return yes;
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
|
|
uint64_t t;
|
|
VERIFY_CHECK(overflow <= 1);
|
|
|
|
t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
|
|
r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
|
|
t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
|
|
r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
|
|
t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
|
|
r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
|
|
t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
|
|
r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
|
|
t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
|
|
r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
|
|
t += (uint64_t)r->d[5];
|
|
r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
|
|
t += (uint64_t)r->d[6];
|
|
r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
|
|
t += (uint64_t)r->d[7];
|
|
r->d[7] = t & 0xFFFFFFFFUL;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
return overflow;
|
|
}
|
|
|
|
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
|
int overflow;
|
|
uint64_t t = (uint64_t)a->d[0] + b->d[0];
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
SECP256K1_SCALAR_VERIFY(b);
|
|
|
|
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)a->d[1] + b->d[1];
|
|
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)a->d[2] + b->d[2];
|
|
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)a->d[3] + b->d[3];
|
|
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)a->d[4] + b->d[4];
|
|
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)a->d[5] + b->d[5];
|
|
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)a->d[6] + b->d[6];
|
|
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)a->d[7] + b->d[7];
|
|
r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
overflow = t + secp256k1_scalar_check_overflow(r);
|
|
VERIFY_CHECK(overflow == 0 || overflow == 1);
|
|
secp256k1_scalar_reduce(r, overflow);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
return overflow;
|
|
}
|
|
|
|
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
|
|
uint64_t t;
|
|
volatile int vflag = flag;
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
VERIFY_CHECK(bit < 256);
|
|
|
|
bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
|
|
t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
|
|
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
|
|
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
|
|
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
|
|
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
|
|
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
|
|
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
|
|
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
|
|
t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
|
|
r->d[7] = t & 0xFFFFFFFFULL;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
VERIFY_CHECK((t >> 32) == 0);
|
|
}
|
|
|
|
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
|
|
int over;
|
|
r->d[0] = secp256k1_read_be32(&b32[28]);
|
|
r->d[1] = secp256k1_read_be32(&b32[24]);
|
|
r->d[2] = secp256k1_read_be32(&b32[20]);
|
|
r->d[3] = secp256k1_read_be32(&b32[16]);
|
|
r->d[4] = secp256k1_read_be32(&b32[12]);
|
|
r->d[5] = secp256k1_read_be32(&b32[8]);
|
|
r->d[6] = secp256k1_read_be32(&b32[4]);
|
|
r->d[7] = secp256k1_read_be32(&b32[0]);
|
|
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
|
|
if (overflow) {
|
|
*overflow = over;
|
|
}
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
secp256k1_write_be32(&bin[0], a->d[7]);
|
|
secp256k1_write_be32(&bin[4], a->d[6]);
|
|
secp256k1_write_be32(&bin[8], a->d[5]);
|
|
secp256k1_write_be32(&bin[12], a->d[4]);
|
|
secp256k1_write_be32(&bin[16], a->d[3]);
|
|
secp256k1_write_be32(&bin[20], a->d[2]);
|
|
secp256k1_write_be32(&bin[24], a->d[1]);
|
|
secp256k1_write_be32(&bin[28], a->d[0]);
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
|
|
}
|
|
|
|
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
|
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
|
|
uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
r->d[0] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
|
|
r->d[1] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
|
|
r->d[2] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
|
|
r->d[3] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
|
|
r->d[4] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
|
|
r->d[5] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
|
|
r->d[6] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
|
|
r->d[7] = t & nonzero;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a) {
|
|
/* Writing `/` for field division and `//` for integer division, we compute
|
|
*
|
|
* a/2 = (a - (a&1))/2 + (a&1)/2
|
|
* = (a >> 1) + (a&1 ? 1/2 : 0)
|
|
* = (a >> 1) + (a&1 ? n//2+1 : 0),
|
|
*
|
|
* where n is the group order and in the last equality we have used 1/2 = n//2+1 (mod n).
|
|
* For n//2, we have the constants SECP256K1_N_H_0, ...
|
|
*
|
|
* This sum does not overflow. The most extreme case is a = -2, the largest odd scalar. Here:
|
|
* - the left summand is: a >> 1 = (a - a&1)/2 = (n-2-1)//2 = (n-3)//2
|
|
* - the right summand is: a&1 ? n//2+1 : 0 = n//2+1 = (n-1)//2 + 2//2 = (n+1)//2
|
|
* Together they sum to (n-3)//2 + (n+1)//2 = (2n-2)//2 = n - 1, which is less than n.
|
|
*/
|
|
uint32_t mask = -(uint32_t)(a->d[0] & 1U);
|
|
uint64_t t = (uint32_t)((a->d[0] >> 1) | (a->d[1] << 31));
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
t += (SECP256K1_N_H_0 + 1U) & mask;
|
|
r->d[0] = t; t >>= 32;
|
|
t += (uint32_t)((a->d[1] >> 1) | (a->d[2] << 31));
|
|
t += SECP256K1_N_H_1 & mask;
|
|
r->d[1] = t; t >>= 32;
|
|
t += (uint32_t)((a->d[2] >> 1) | (a->d[3] << 31));
|
|
t += SECP256K1_N_H_2 & mask;
|
|
r->d[2] = t; t >>= 32;
|
|
t += (uint32_t)((a->d[3] >> 1) | (a->d[4] << 31));
|
|
t += SECP256K1_N_H_3 & mask;
|
|
r->d[3] = t; t >>= 32;
|
|
t += (uint32_t)((a->d[4] >> 1) | (a->d[5] << 31));
|
|
t += SECP256K1_N_H_4 & mask;
|
|
r->d[4] = t; t >>= 32;
|
|
t += (uint32_t)((a->d[5] >> 1) | (a->d[6] << 31));
|
|
t += SECP256K1_N_H_5 & mask;
|
|
r->d[5] = t; t >>= 32;
|
|
t += (uint32_t)((a->d[6] >> 1) | (a->d[7] << 31));
|
|
t += SECP256K1_N_H_6 & mask;
|
|
r->d[6] = t; t >>= 32;
|
|
r->d[7] = (uint32_t)t + (uint32_t)(a->d[7] >> 1) + (SECP256K1_N_H_7 & mask);
|
|
|
|
/* The line above only computed the bottom 32 bits of r->d[7]. Redo the computation
|
|
* in full 64 bits to make sure the top 32 bits are indeed zero. */
|
|
VERIFY_CHECK((t + (a->d[7] >> 1) + (SECP256K1_N_H_7 & mask)) >> 32 == 0);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
|
|
}
|
|
|
|
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
|
|
int yes = 0;
|
|
int no = 0;
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
no |= (a->d[7] < SECP256K1_N_H_7);
|
|
yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
|
|
no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
|
|
no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
|
|
no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
|
|
no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
|
|
yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
|
|
no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
|
|
yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
|
|
no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
|
|
yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
|
|
yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
|
|
return yes;
|
|
}
|
|
|
|
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
|
|
/* If we are flag = 0, mask = 00...00 and this is a no-op;
|
|
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
|
|
volatile int vflag = flag;
|
|
uint32_t mask = -vflag;
|
|
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
|
|
uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
|
|
r->d[0] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
|
|
r->d[1] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
|
|
r->d[2] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
|
|
r->d[3] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
|
|
r->d[4] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
|
|
r->d[5] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
|
|
r->d[6] = t & nonzero; t >>= 32;
|
|
t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
|
|
r->d[7] = t & nonzero;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
return 2 * (mask == 0) - 1;
|
|
}
|
|
|
|
|
|
/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
|
|
|
|
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
|
|
#define muladd(a,b) { \
|
|
uint32_t tl, th; \
|
|
{ \
|
|
uint64_t t = (uint64_t)a * b; \
|
|
th = t >> 32; /* at most 0xFFFFFFFE */ \
|
|
tl = t; \
|
|
} \
|
|
c0 += tl; /* overflow is handled on the next line */ \
|
|
th += (c0 < tl); /* at most 0xFFFFFFFF */ \
|
|
c1 += th; /* overflow is handled on the next line */ \
|
|
c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
|
|
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
|
|
}
|
|
|
|
/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
|
|
#define muladd_fast(a,b) { \
|
|
uint32_t tl, th; \
|
|
{ \
|
|
uint64_t t = (uint64_t)a * b; \
|
|
th = t >> 32; /* at most 0xFFFFFFFE */ \
|
|
tl = t; \
|
|
} \
|
|
c0 += tl; /* overflow is handled on the next line */ \
|
|
th += (c0 < tl); /* at most 0xFFFFFFFF */ \
|
|
c1 += th; /* never overflows by contract (verified in the next line) */ \
|
|
VERIFY_CHECK(c1 >= th); \
|
|
}
|
|
|
|
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
|
|
#define sumadd(a) { \
|
|
unsigned int over; \
|
|
c0 += (a); /* overflow is handled on the next line */ \
|
|
over = (c0 < (a)); \
|
|
c1 += over; /* overflow is handled on the next line */ \
|
|
c2 += (c1 < over); /* never overflows by contract */ \
|
|
}
|
|
|
|
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
|
|
#define sumadd_fast(a) { \
|
|
c0 += (a); /* overflow is handled on the next line */ \
|
|
c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
|
|
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
|
|
VERIFY_CHECK(c2 == 0); \
|
|
}
|
|
|
|
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */
|
|
#define extract(n) { \
|
|
(n) = c0; \
|
|
c0 = c1; \
|
|
c1 = c2; \
|
|
c2 = 0; \
|
|
}
|
|
|
|
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */
|
|
#define extract_fast(n) { \
|
|
(n) = c0; \
|
|
c0 = c1; \
|
|
c1 = 0; \
|
|
VERIFY_CHECK(c2 == 0); \
|
|
}
|
|
|
|
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
|
|
uint64_t c;
|
|
uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
|
|
uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
|
|
uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
|
|
|
|
/* 96 bit accumulator. */
|
|
uint32_t c0, c1, c2;
|
|
|
|
/* Reduce 512 bits into 385. */
|
|
/* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
|
|
c0 = l[0]; c1 = 0; c2 = 0;
|
|
muladd_fast(n0, SECP256K1_N_C_0);
|
|
extract_fast(m0);
|
|
sumadd_fast(l[1]);
|
|
muladd(n1, SECP256K1_N_C_0);
|
|
muladd(n0, SECP256K1_N_C_1);
|
|
extract(m1);
|
|
sumadd(l[2]);
|
|
muladd(n2, SECP256K1_N_C_0);
|
|
muladd(n1, SECP256K1_N_C_1);
|
|
muladd(n0, SECP256K1_N_C_2);
|
|
extract(m2);
|
|
sumadd(l[3]);
|
|
muladd(n3, SECP256K1_N_C_0);
|
|
muladd(n2, SECP256K1_N_C_1);
|
|
muladd(n1, SECP256K1_N_C_2);
|
|
muladd(n0, SECP256K1_N_C_3);
|
|
extract(m3);
|
|
sumadd(l[4]);
|
|
muladd(n4, SECP256K1_N_C_0);
|
|
muladd(n3, SECP256K1_N_C_1);
|
|
muladd(n2, SECP256K1_N_C_2);
|
|
muladd(n1, SECP256K1_N_C_3);
|
|
sumadd(n0);
|
|
extract(m4);
|
|
sumadd(l[5]);
|
|
muladd(n5, SECP256K1_N_C_0);
|
|
muladd(n4, SECP256K1_N_C_1);
|
|
muladd(n3, SECP256K1_N_C_2);
|
|
muladd(n2, SECP256K1_N_C_3);
|
|
sumadd(n1);
|
|
extract(m5);
|
|
sumadd(l[6]);
|
|
muladd(n6, SECP256K1_N_C_0);
|
|
muladd(n5, SECP256K1_N_C_1);
|
|
muladd(n4, SECP256K1_N_C_2);
|
|
muladd(n3, SECP256K1_N_C_3);
|
|
sumadd(n2);
|
|
extract(m6);
|
|
sumadd(l[7]);
|
|
muladd(n7, SECP256K1_N_C_0);
|
|
muladd(n6, SECP256K1_N_C_1);
|
|
muladd(n5, SECP256K1_N_C_2);
|
|
muladd(n4, SECP256K1_N_C_3);
|
|
sumadd(n3);
|
|
extract(m7);
|
|
muladd(n7, SECP256K1_N_C_1);
|
|
muladd(n6, SECP256K1_N_C_2);
|
|
muladd(n5, SECP256K1_N_C_3);
|
|
sumadd(n4);
|
|
extract(m8);
|
|
muladd(n7, SECP256K1_N_C_2);
|
|
muladd(n6, SECP256K1_N_C_3);
|
|
sumadd(n5);
|
|
extract(m9);
|
|
muladd(n7, SECP256K1_N_C_3);
|
|
sumadd(n6);
|
|
extract(m10);
|
|
sumadd_fast(n7);
|
|
extract_fast(m11);
|
|
VERIFY_CHECK(c0 <= 1);
|
|
m12 = c0;
|
|
|
|
/* Reduce 385 bits into 258. */
|
|
/* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
|
|
c0 = m0; c1 = 0; c2 = 0;
|
|
muladd_fast(m8, SECP256K1_N_C_0);
|
|
extract_fast(p0);
|
|
sumadd_fast(m1);
|
|
muladd(m9, SECP256K1_N_C_0);
|
|
muladd(m8, SECP256K1_N_C_1);
|
|
extract(p1);
|
|
sumadd(m2);
|
|
muladd(m10, SECP256K1_N_C_0);
|
|
muladd(m9, SECP256K1_N_C_1);
|
|
muladd(m8, SECP256K1_N_C_2);
|
|
extract(p2);
|
|
sumadd(m3);
|
|
muladd(m11, SECP256K1_N_C_0);
|
|
muladd(m10, SECP256K1_N_C_1);
|
|
muladd(m9, SECP256K1_N_C_2);
|
|
muladd(m8, SECP256K1_N_C_3);
|
|
extract(p3);
|
|
sumadd(m4);
|
|
muladd(m12, SECP256K1_N_C_0);
|
|
muladd(m11, SECP256K1_N_C_1);
|
|
muladd(m10, SECP256K1_N_C_2);
|
|
muladd(m9, SECP256K1_N_C_3);
|
|
sumadd(m8);
|
|
extract(p4);
|
|
sumadd(m5);
|
|
muladd(m12, SECP256K1_N_C_1);
|
|
muladd(m11, SECP256K1_N_C_2);
|
|
muladd(m10, SECP256K1_N_C_3);
|
|
sumadd(m9);
|
|
extract(p5);
|
|
sumadd(m6);
|
|
muladd(m12, SECP256K1_N_C_2);
|
|
muladd(m11, SECP256K1_N_C_3);
|
|
sumadd(m10);
|
|
extract(p6);
|
|
sumadd_fast(m7);
|
|
muladd_fast(m12, SECP256K1_N_C_3);
|
|
sumadd_fast(m11);
|
|
extract_fast(p7);
|
|
p8 = c0 + m12;
|
|
VERIFY_CHECK(p8 <= 2);
|
|
|
|
/* Reduce 258 bits into 256. */
|
|
/* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
|
|
c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
|
|
r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
|
|
r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
|
|
r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
|
|
r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
c += p4 + (uint64_t)p8;
|
|
r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
c += p5;
|
|
r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
c += p6;
|
|
r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
c += p7;
|
|
r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;
|
|
|
|
/* Final reduction of r. */
|
|
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
|
|
}
|
|
|
|
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
|
/* 96 bit accumulator. */
|
|
uint32_t c0 = 0, c1 = 0, c2 = 0;
|
|
|
|
/* l[0..15] = a[0..7] * b[0..7]. */
|
|
muladd_fast(a->d[0], b->d[0]);
|
|
extract_fast(l[0]);
|
|
muladd(a->d[0], b->d[1]);
|
|
muladd(a->d[1], b->d[0]);
|
|
extract(l[1]);
|
|
muladd(a->d[0], b->d[2]);
|
|
muladd(a->d[1], b->d[1]);
|
|
muladd(a->d[2], b->d[0]);
|
|
extract(l[2]);
|
|
muladd(a->d[0], b->d[3]);
|
|
muladd(a->d[1], b->d[2]);
|
|
muladd(a->d[2], b->d[1]);
|
|
muladd(a->d[3], b->d[0]);
|
|
extract(l[3]);
|
|
muladd(a->d[0], b->d[4]);
|
|
muladd(a->d[1], b->d[3]);
|
|
muladd(a->d[2], b->d[2]);
|
|
muladd(a->d[3], b->d[1]);
|
|
muladd(a->d[4], b->d[0]);
|
|
extract(l[4]);
|
|
muladd(a->d[0], b->d[5]);
|
|
muladd(a->d[1], b->d[4]);
|
|
muladd(a->d[2], b->d[3]);
|
|
muladd(a->d[3], b->d[2]);
|
|
muladd(a->d[4], b->d[1]);
|
|
muladd(a->d[5], b->d[0]);
|
|
extract(l[5]);
|
|
muladd(a->d[0], b->d[6]);
|
|
muladd(a->d[1], b->d[5]);
|
|
muladd(a->d[2], b->d[4]);
|
|
muladd(a->d[3], b->d[3]);
|
|
muladd(a->d[4], b->d[2]);
|
|
muladd(a->d[5], b->d[1]);
|
|
muladd(a->d[6], b->d[0]);
|
|
extract(l[6]);
|
|
muladd(a->d[0], b->d[7]);
|
|
muladd(a->d[1], b->d[6]);
|
|
muladd(a->d[2], b->d[5]);
|
|
muladd(a->d[3], b->d[4]);
|
|
muladd(a->d[4], b->d[3]);
|
|
muladd(a->d[5], b->d[2]);
|
|
muladd(a->d[6], b->d[1]);
|
|
muladd(a->d[7], b->d[0]);
|
|
extract(l[7]);
|
|
muladd(a->d[1], b->d[7]);
|
|
muladd(a->d[2], b->d[6]);
|
|
muladd(a->d[3], b->d[5]);
|
|
muladd(a->d[4], b->d[4]);
|
|
muladd(a->d[5], b->d[3]);
|
|
muladd(a->d[6], b->d[2]);
|
|
muladd(a->d[7], b->d[1]);
|
|
extract(l[8]);
|
|
muladd(a->d[2], b->d[7]);
|
|
muladd(a->d[3], b->d[6]);
|
|
muladd(a->d[4], b->d[5]);
|
|
muladd(a->d[5], b->d[4]);
|
|
muladd(a->d[6], b->d[3]);
|
|
muladd(a->d[7], b->d[2]);
|
|
extract(l[9]);
|
|
muladd(a->d[3], b->d[7]);
|
|
muladd(a->d[4], b->d[6]);
|
|
muladd(a->d[5], b->d[5]);
|
|
muladd(a->d[6], b->d[4]);
|
|
muladd(a->d[7], b->d[3]);
|
|
extract(l[10]);
|
|
muladd(a->d[4], b->d[7]);
|
|
muladd(a->d[5], b->d[6]);
|
|
muladd(a->d[6], b->d[5]);
|
|
muladd(a->d[7], b->d[4]);
|
|
extract(l[11]);
|
|
muladd(a->d[5], b->d[7]);
|
|
muladd(a->d[6], b->d[6]);
|
|
muladd(a->d[7], b->d[5]);
|
|
extract(l[12]);
|
|
muladd(a->d[6], b->d[7]);
|
|
muladd(a->d[7], b->d[6]);
|
|
extract(l[13]);
|
|
muladd_fast(a->d[7], b->d[7]);
|
|
extract_fast(l[14]);
|
|
VERIFY_CHECK(c1 == 0);
|
|
l[15] = c0;
|
|
}
|
|
|
|
#undef sumadd
|
|
#undef sumadd_fast
|
|
#undef muladd
|
|
#undef muladd_fast
|
|
#undef extract
|
|
#undef extract_fast
|
|
|
|
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
|
uint32_t l[16];
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
SECP256K1_SCALAR_VERIFY(b);
|
|
|
|
secp256k1_scalar_mul_512(l, a, b);
|
|
secp256k1_scalar_reduce_512(r, l);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
|
SECP256K1_SCALAR_VERIFY(k);
|
|
|
|
r1->d[0] = k->d[0];
|
|
r1->d[1] = k->d[1];
|
|
r1->d[2] = k->d[2];
|
|
r1->d[3] = k->d[3];
|
|
r1->d[4] = 0;
|
|
r1->d[5] = 0;
|
|
r1->d[6] = 0;
|
|
r1->d[7] = 0;
|
|
r2->d[0] = k->d[4];
|
|
r2->d[1] = k->d[5];
|
|
r2->d[2] = k->d[6];
|
|
r2->d[3] = k->d[7];
|
|
r2->d[4] = 0;
|
|
r2->d[5] = 0;
|
|
r2->d[6] = 0;
|
|
r2->d[7] = 0;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r1);
|
|
SECP256K1_SCALAR_VERIFY(r2);
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
SECP256K1_SCALAR_VERIFY(b);
|
|
|
|
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
|
|
}
|
|
|
|
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
|
|
uint32_t l[16];
|
|
unsigned int shiftlimbs;
|
|
unsigned int shiftlow;
|
|
unsigned int shifthigh;
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
SECP256K1_SCALAR_VERIFY(b);
|
|
VERIFY_CHECK(shift >= 256);
|
|
|
|
secp256k1_scalar_mul_512(l, a, b);
|
|
shiftlimbs = shift >> 5;
|
|
shiftlow = shift & 0x1F;
|
|
shifthigh = 32 - shiftlow;
|
|
r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
|
|
r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
|
|
r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
|
|
r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
|
|
r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
|
|
r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
|
|
r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
|
|
r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
|
|
secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
|
|
uint32_t mask0, mask1;
|
|
volatile int vflag = flag;
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d));
|
|
|
|
mask0 = vflag + ~((uint32_t)0);
|
|
mask1 = ~mask0;
|
|
r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
|
|
r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
|
|
r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
|
|
r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
|
|
r->d[4] = (r->d[4] & mask0) | (a->d[4] & mask1);
|
|
r->d[5] = (r->d[5] & mask0) | (a->d[5] & mask1);
|
|
r->d[6] = (r->d[6] & mask0) | (a->d[6] & mask1);
|
|
r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a) {
|
|
const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4],
|
|
a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8];
|
|
|
|
/* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and
|
|
* have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8).
|
|
*/
|
|
VERIFY_CHECK(a0 >> 30 == 0);
|
|
VERIFY_CHECK(a1 >> 30 == 0);
|
|
VERIFY_CHECK(a2 >> 30 == 0);
|
|
VERIFY_CHECK(a3 >> 30 == 0);
|
|
VERIFY_CHECK(a4 >> 30 == 0);
|
|
VERIFY_CHECK(a5 >> 30 == 0);
|
|
VERIFY_CHECK(a6 >> 30 == 0);
|
|
VERIFY_CHECK(a7 >> 30 == 0);
|
|
VERIFY_CHECK(a8 >> 16 == 0);
|
|
|
|
r->d[0] = a0 | a1 << 30;
|
|
r->d[1] = a1 >> 2 | a2 << 28;
|
|
r->d[2] = a2 >> 4 | a3 << 26;
|
|
r->d[3] = a3 >> 6 | a4 << 24;
|
|
r->d[4] = a4 >> 8 | a5 << 22;
|
|
r->d[5] = a5 >> 10 | a6 << 20;
|
|
r->d[6] = a6 >> 12 | a7 << 18;
|
|
r->d[7] = a7 >> 14 | a8 << 16;
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a) {
|
|
const uint32_t M30 = UINT32_MAX >> 2;
|
|
const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3],
|
|
a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7];
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
r->v[0] = a0 & M30;
|
|
r->v[1] = (a0 >> 30 | a1 << 2) & M30;
|
|
r->v[2] = (a1 >> 28 | a2 << 4) & M30;
|
|
r->v[3] = (a2 >> 26 | a3 << 6) & M30;
|
|
r->v[4] = (a3 >> 24 | a4 << 8) & M30;
|
|
r->v[5] = (a4 >> 22 | a5 << 10) & M30;
|
|
r->v[6] = (a5 >> 20 | a6 << 12) & M30;
|
|
r->v[7] = (a6 >> 18 | a7 << 14) & M30;
|
|
r->v[8] = a7 >> 16;
|
|
}
|
|
|
|
static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_scalar = {
|
|
{{0x10364141L, 0x3F497A33L, 0x348A03BBL, 0x2BB739ABL, -0x146L, 0, 0, 0, 65536}},
|
|
0x2A774EC1L
|
|
};
|
|
|
|
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
|
secp256k1_modinv32_signed30 s;
|
|
#ifdef VERIFY
|
|
int zero_in = secp256k1_scalar_is_zero(x);
|
|
#endif
|
|
SECP256K1_SCALAR_VERIFY(x);
|
|
|
|
secp256k1_scalar_to_signed30(&s, x);
|
|
secp256k1_modinv32(&s, &secp256k1_const_modinfo_scalar);
|
|
secp256k1_scalar_from_signed30(r, &s);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
|
|
}
|
|
|
|
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
|
|
secp256k1_modinv32_signed30 s;
|
|
#ifdef VERIFY
|
|
int zero_in = secp256k1_scalar_is_zero(x);
|
|
#endif
|
|
SECP256K1_SCALAR_VERIFY(x);
|
|
|
|
secp256k1_scalar_to_signed30(&s, x);
|
|
secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_scalar);
|
|
secp256k1_scalar_from_signed30(r, &s);
|
|
|
|
SECP256K1_SCALAR_VERIFY(r);
|
|
VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
|
|
SECP256K1_SCALAR_VERIFY(a);
|
|
|
|
return !(a->d[0] & 1);
|
|
}
|
|
|
|
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
|