bitcoin/test/functional/test_framework/wallet.py

378 lines
16 KiB
Python

#!/usr/bin/env python3
# Copyright (c) 2020-2021 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""A limited-functionality wallet, which may replace a real wallet in tests"""
from copy import deepcopy
from decimal import Decimal
from enum import Enum
from random import choice
from typing import (
Any,
Optional,
)
from test_framework.address import (
base58_to_byte,
create_deterministic_address_bcrt1_p2tr_op_true,
key_to_p2pkh,
key_to_p2sh_p2wpkh,
key_to_p2wpkh,
)
from test_framework.descriptors import descsum_create
from test_framework.key import ECKey
from test_framework.messages import (
COIN,
COutPoint,
CTransaction,
CTxIn,
CTxInWitness,
CTxOut,
tx_from_hex,
)
from test_framework.script import (
CScript,
LegacySignatureHash,
LEAF_VERSION_TAPSCRIPT,
OP_NOP,
OP_TRUE,
SIGHASH_ALL,
)
from test_framework.script_util import (
key_to_p2pk_script,
key_to_p2pkh_script,
key_to_p2sh_p2wpkh_script,
key_to_p2wpkh_script,
keyhash_to_p2pkh_script,
scripthash_to_p2sh_script,
)
from test_framework.util import (
assert_equal,
assert_greater_than_or_equal,
)
DEFAULT_FEE = Decimal("0.0001")
class MiniWalletMode(Enum):
"""Determines the transaction type the MiniWallet is creating and spending.
For most purposes, the default mode ADDRESS_OP_TRUE should be sufficient;
it simply uses a fixed bech32m P2TR address whose coins are spent with a
witness stack of OP_TRUE, i.e. following an anyone-can-spend policy.
However, if the transactions need to be modified by the user (e.g. prepending
scriptSig for testing opcodes that are activated by a soft-fork), or the txs
should contain an actual signature, the raw modes RAW_OP_TRUE and RAW_P2PK
can be useful. Summary of modes:
| output | | tx is | can modify | needs
mode | description | address | standard | scriptSig | signing
----------------+-------------------+-----------+----------+------------+----------
ADDRESS_OP_TRUE | anyone-can-spend | bech32m | yes | no | no
RAW_OP_TRUE | anyone-can-spend | - (raw) | no | yes | no
RAW_P2PK | pay-to-public-key | - (raw) | yes | yes | yes
"""
ADDRESS_OP_TRUE = 1
RAW_OP_TRUE = 2
RAW_P2PK = 3
class MiniWallet:
def __init__(self, test_node, *, mode=MiniWalletMode.ADDRESS_OP_TRUE):
self._test_node = test_node
self._utxos = []
self._priv_key = None
self._address = None
assert isinstance(mode, MiniWalletMode)
if mode == MiniWalletMode.RAW_OP_TRUE:
self._scriptPubKey = bytes(CScript([OP_TRUE]))
elif mode == MiniWalletMode.RAW_P2PK:
# use simple deterministic private key (k=1)
self._priv_key = ECKey()
self._priv_key.set((1).to_bytes(32, 'big'), True)
pub_key = self._priv_key.get_pubkey()
self._scriptPubKey = key_to_p2pk_script(pub_key.get_bytes())
elif mode == MiniWalletMode.ADDRESS_OP_TRUE:
self._address, self._internal_key = create_deterministic_address_bcrt1_p2tr_op_true()
self._scriptPubKey = bytes.fromhex(self._test_node.validateaddress(self._address)['scriptPubKey'])
def rescan_utxos(self):
"""Drop all utxos and rescan the utxo set"""
self._utxos = []
res = self._test_node.scantxoutset(action="start", scanobjects=[self.get_descriptor()])
assert_equal(True, res['success'])
for utxo in res['unspents']:
self._utxos.append({'txid': utxo['txid'], 'vout': utxo['vout'], 'value': utxo['amount'], 'height': utxo['height']})
def scan_tx(self, tx):
"""Scan the tx for self._scriptPubKey outputs and add them to self._utxos"""
for out in tx['vout']:
if out['scriptPubKey']['hex'] == self._scriptPubKey.hex():
self._utxos.append({'txid': tx['txid'], 'vout': out['n'], 'value': out['value'], 'height': 0})
def sign_tx(self, tx, fixed_length=True):
"""Sign tx that has been created by MiniWallet in P2PK mode"""
assert self._priv_key is not None
(sighash, err) = LegacySignatureHash(CScript(self._scriptPubKey), tx, 0, SIGHASH_ALL)
assert err is None
# for exact fee calculation, create only signatures with fixed size by default (>49.89% probability):
# 65 bytes: high-R val (33 bytes) + low-S val (32 bytes)
# with the DER header/skeleton data of 6 bytes added, this leads to a target size of 71 bytes
der_sig = b''
while not len(der_sig) == 71:
der_sig = self._priv_key.sign_ecdsa(sighash)
if not fixed_length:
break
tx.vin[0].scriptSig = CScript([der_sig + bytes(bytearray([SIGHASH_ALL]))])
def generate(self, num_blocks, **kwargs):
"""Generate blocks with coinbase outputs to the internal address, and append the outputs to the internal list"""
blocks = self._test_node.generatetodescriptor(num_blocks, self.get_descriptor(), **kwargs)
for b in blocks:
block_info = self._test_node.getblock(blockhash=b, verbosity=2)
cb_tx = block_info['tx'][0]
self._utxos.append({'txid': cb_tx['txid'], 'vout': 0, 'value': cb_tx['vout'][0]['value'], 'height': block_info['height']})
return blocks
def get_scriptPubKey(self):
return self._scriptPubKey
def get_descriptor(self):
return descsum_create(f'raw({self._scriptPubKey.hex()})')
def get_address(self):
return self._address
def get_utxo(self, *, txid: str = '', vout: Optional[int] = None, mark_as_spent=True):
"""
Returns a utxo and marks it as spent (pops it from the internal list)
Args:
txid: get the first utxo we find from a specific transaction
"""
self._utxos = sorted(self._utxos, key=lambda k: (k['value'], -k['height'])) # Put the largest utxo last
if txid:
utxo_filter: Any = filter(lambda utxo: txid == utxo['txid'], self._utxos)
else:
utxo_filter = reversed(self._utxos) # By default the largest utxo
if vout is not None:
utxo_filter = filter(lambda utxo: vout == utxo['vout'], utxo_filter)
index = self._utxos.index(next(utxo_filter))
if mark_as_spent:
return self._utxos.pop(index)
else:
return self._utxos[index]
def send_self_transfer(self, **kwargs):
"""Create and send a tx with the specified fee_rate. Fee may be exact or at most one satoshi higher than needed."""
tx = self.create_self_transfer(**kwargs)
self.sendrawtransaction(from_node=kwargs['from_node'], tx_hex=tx['hex'])
return tx
def send_to(self, *, from_node, scriptPubKey, amount, fee=1000):
"""
Create and send a tx with an output to a given scriptPubKey/amount,
plus a change output to our internal address. To keep things simple, a
fixed fee given in Satoshi is used.
Note that this method fails if there is no single internal utxo
available that can cover the cost for the amount and the fixed fee
(the utxo with the largest value is taken).
Returns a tuple (txid, n) referring to the created external utxo outpoint.
"""
tx = self.create_self_transfer(from_node=from_node, fee_rate=0, mempool_valid=False)['tx']
assert_greater_than_or_equal(tx.vout[0].nValue, amount + fee)
tx.vout[0].nValue -= (amount + fee) # change output -> MiniWallet
tx.vout.append(CTxOut(amount, scriptPubKey)) # arbitrary output -> to be returned
txid = self.sendrawtransaction(from_node=from_node, tx_hex=tx.serialize().hex())
return txid, 1
def send_self_transfer_multi(self, **kwargs):
"""
Create and send a transaction that spends the given UTXOs and creates a
certain number of outputs with equal amounts.
Returns a dictionary with
- txid
- serialized transaction in hex format
- transaction as CTransaction instance
- list of newly created UTXOs, ordered by vout index
"""
tx = self.create_self_transfer_multi(**kwargs)
txid = self.sendrawtransaction(from_node=kwargs['from_node'], tx_hex=tx.serialize().hex())
return {'new_utxos': [self.get_utxo(txid=txid, vout=vout) for vout in range(len(tx.vout))],
'txid': txid, 'hex': tx.serialize().hex(), 'tx': tx}
def create_self_transfer_multi(self, *, from_node, utxos_to_spend, num_outputs=1, fee_per_output=1000):
"""
Create and return a transaction that spends the given UTXOs and creates a
certain number of outputs with equal amounts.
"""
# create simple tx template (1 input, 1 output)
tx = self.create_self_transfer(fee_rate=0, from_node=from_node, utxo_to_spend=utxos_to_spend[0], mempool_valid=False)['tx']
# duplicate inputs, witnesses and outputs
tx.vin = [deepcopy(tx.vin[0]) for _ in range(len(utxos_to_spend))]
tx.wit.vtxinwit = [deepcopy(tx.wit.vtxinwit[0]) for _ in range(len(utxos_to_spend))]
tx.vout = [deepcopy(tx.vout[0]) for _ in range(num_outputs)]
# adapt input prevouts
for i, utxo in enumerate(utxos_to_spend):
tx.vin[i] = CTxIn(COutPoint(int(utxo['txid'], 16), utxo['vout']))
# adapt output amounts (use fixed fee per output)
inputs_value_total = sum([int(COIN * utxo['value']) for utxo in utxos_to_spend])
outputs_value_total = inputs_value_total - fee_per_output * num_outputs
for i in range(num_outputs):
tx.vout[i].nValue = outputs_value_total // num_outputs
return tx
def create_self_transfer(self, *, fee_rate=Decimal("0.003"), from_node=None, utxo_to_spend=None, mempool_valid=True, locktime=0, sequence=0):
"""Create and return a tx with the specified fee_rate. Fee may be exact or at most one satoshi higher than needed."""
from_node = from_node or self._test_node
utxo_to_spend = utxo_to_spend or self.get_utxo()
if self._priv_key is None:
vsize = Decimal(104) # anyone-can-spend
else:
vsize = Decimal(168) # P2PK (73 bytes scriptSig + 35 bytes scriptPubKey + 60 bytes other)
send_value = int(COIN * (utxo_to_spend['value'] - fee_rate * (vsize / 1000)))
assert send_value > 0
tx = CTransaction()
tx.vin = [CTxIn(COutPoint(int(utxo_to_spend['txid'], 16), utxo_to_spend['vout']), nSequence=sequence)]
tx.vout = [CTxOut(send_value, self._scriptPubKey)]
tx.nLockTime = locktime
if not self._address:
# raw script
if self._priv_key is not None:
# P2PK, need to sign
self.sign_tx(tx)
else:
# anyone-can-spend
tx.vin[0].scriptSig = CScript([OP_NOP] * 43) # pad to identical size
else:
tx.wit.vtxinwit = [CTxInWitness()]
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE]), bytes([LEAF_VERSION_TAPSCRIPT]) + self._internal_key]
tx_hex = tx.serialize().hex()
tx_info = from_node.testmempoolaccept([tx_hex])[0]
assert_equal(mempool_valid, tx_info['allowed'])
if mempool_valid:
assert_equal(tx_info['vsize'], vsize)
assert_equal(tx_info['fees']['base'], utxo_to_spend['value'] - Decimal(send_value) / COIN)
return {'txid': tx_info['txid'], 'wtxid': tx_info['wtxid'], 'hex': tx_hex, 'tx': tx}
def sendrawtransaction(self, *, from_node, tx_hex, **kwargs):
txid = from_node.sendrawtransaction(hexstring=tx_hex, **kwargs)
self.scan_tx(from_node.decoderawtransaction(tx_hex))
return txid
def getnewdestination(address_type='bech32'):
"""Generate a random destination of the specified type and return the
corresponding public key, scriptPubKey and address. Supported types are
'legacy', 'p2sh-segwit' and 'bech32'. Can be used when a random
destination is needed, but no compiled wallet is available (e.g. as
replacement to the getnewaddress/getaddressinfo RPCs)."""
key = ECKey()
key.generate()
pubkey = key.get_pubkey().get_bytes()
if address_type == 'legacy':
scriptpubkey = key_to_p2pkh_script(pubkey)
address = key_to_p2pkh(pubkey)
elif address_type == 'p2sh-segwit':
scriptpubkey = key_to_p2sh_p2wpkh_script(pubkey)
address = key_to_p2sh_p2wpkh(pubkey)
elif address_type == 'bech32':
scriptpubkey = key_to_p2wpkh_script(pubkey)
address = key_to_p2wpkh(pubkey)
# TODO: also support bech32m (need to generate x-only-pubkey)
else:
assert False
return pubkey, scriptpubkey, address
def address_to_scriptpubkey(address):
"""Converts a given address to the corresponding output script (scriptPubKey)."""
payload, version = base58_to_byte(address)
if version == 111: # testnet pubkey hash
return keyhash_to_p2pkh_script(payload)
elif version == 196: # testnet script hash
return scripthash_to_p2sh_script(payload)
# TODO: also support other address formats
else:
assert False
def make_chain(node, address, privkeys, parent_txid, parent_value, n=0, parent_locking_script=None, fee=DEFAULT_FEE):
"""Build a transaction that spends parent_txid.vout[n] and produces one output with
amount = parent_value with a fee deducted.
Return tuple (CTransaction object, raw hex, nValue, scriptPubKey of the output created).
"""
inputs = [{"txid": parent_txid, "vout": n}]
my_value = parent_value - fee
outputs = {address : my_value}
rawtx = node.createrawtransaction(inputs, outputs)
prevtxs = [{
"txid": parent_txid,
"vout": n,
"scriptPubKey": parent_locking_script,
"amount": parent_value,
}] if parent_locking_script else None
signedtx = node.signrawtransactionwithkey(hexstring=rawtx, privkeys=privkeys, prevtxs=prevtxs)
assert signedtx["complete"]
tx = tx_from_hex(signedtx["hex"])
return (tx, signedtx["hex"], my_value, tx.vout[0].scriptPubKey.hex())
def create_child_with_parents(node, address, privkeys, parents_tx, values, locking_scripts, fee=DEFAULT_FEE):
"""Creates a transaction that spends the first output of each parent in parents_tx."""
num_parents = len(parents_tx)
total_value = sum(values)
inputs = [{"txid": tx.rehash(), "vout": 0} for tx in parents_tx]
outputs = {address : total_value - fee}
rawtx_child = node.createrawtransaction(inputs, outputs)
prevtxs = []
for i in range(num_parents):
prevtxs.append({"txid": parents_tx[i].rehash(), "vout": 0, "scriptPubKey": locking_scripts[i], "amount": values[i]})
signedtx_child = node.signrawtransactionwithkey(hexstring=rawtx_child, privkeys=privkeys, prevtxs=prevtxs)
assert signedtx_child["complete"]
return signedtx_child["hex"]
def create_raw_chain(node, first_coin, address, privkeys, chain_length=25):
"""Helper function: create a "chain" of chain_length transactions. The nth transaction in the
chain is a child of the n-1th transaction and parent of the n+1th transaction.
"""
parent_locking_script = None
txid = first_coin["txid"]
chain_hex = []
chain_txns = []
value = first_coin["amount"]
for _ in range(chain_length):
(tx, txhex, value, parent_locking_script) = make_chain(node, address, privkeys, txid, value, 0, parent_locking_script)
txid = tx.rehash()
chain_hex.append(txhex)
chain_txns.append(tx)
return (chain_hex, chain_txns)
def bulk_transaction(tx, node, target_weight, privkeys, prevtxs=None):
"""Pad a transaction with extra outputs until it reaches a target weight (or higher).
returns CTransaction object
"""
tx_heavy = deepcopy(tx)
assert_greater_than_or_equal(target_weight, tx_heavy.get_weight())
while tx_heavy.get_weight() < target_weight:
random_spk = "6a4d0200" # OP_RETURN OP_PUSH2 512 bytes
for _ in range(512*2):
random_spk += choice("0123456789ABCDEF")
tx_heavy.vout.append(CTxOut(0, bytes.fromhex(random_spk)))
# Re-sign the transaction
if privkeys:
signed = node.signrawtransactionwithkey(tx_heavy.serialize().hex(), privkeys, prevtxs)
return tx_from_hex(signed["hex"])
# OP_TRUE
tx_heavy.wit.vtxinwit = [CTxInWitness()]
tx_heavy.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
return tx_heavy