bitcoin/contrib/devtools/security-check.py

247 lines
7.9 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2015-2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
'''
Perform basic security checks on a series of executables.
Exit status will be 0 if successful, and the program will be silent.
Otherwise the exit status will be 1 and it will log which executables failed which checks.
'''
import sys
from typing import List, Optional
import lief
import pixie
def check_ELF_PIE(executable) -> bool:
'''
Check for position independent executable (PIE), allowing for address space randomization.
'''
elf = pixie.load(executable)
return elf.hdr.e_type == pixie.ET_DYN
def check_ELF_NX(executable) -> bool:
'''
Check that no sections are writable and executable (including the stack)
'''
elf = pixie.load(executable)
have_wx = False
have_gnu_stack = False
for ph in elf.program_headers:
if ph.p_type == pixie.PT_GNU_STACK:
have_gnu_stack = True
if (ph.p_flags & pixie.PF_W) != 0 and (ph.p_flags & pixie.PF_X) != 0: # section is both writable and executable
have_wx = True
return have_gnu_stack and not have_wx
def check_ELF_RELRO(executable) -> bool:
'''
Check for read-only relocations.
GNU_RELRO program header must exist
Dynamic section must have BIND_NOW flag
'''
elf = pixie.load(executable)
have_gnu_relro = False
for ph in elf.program_headers:
# Note: not checking p_flags == PF_R: here as linkers set the permission differently
# This does not affect security: the permission flags of the GNU_RELRO program
# header are ignored, the PT_LOAD header determines the effective permissions.
# However, the dynamic linker need to write to this area so these are RW.
# Glibc itself takes care of mprotecting this area R after relocations are finished.
# See also https://marc.info/?l=binutils&m=1498883354122353
if ph.p_type == pixie.PT_GNU_RELRO:
have_gnu_relro = True
have_bindnow = False
for flags in elf.query_dyn_tags(pixie.DT_FLAGS):
assert isinstance(flags, int)
if flags & pixie.DF_BIND_NOW:
have_bindnow = True
return have_gnu_relro and have_bindnow
def check_ELF_Canary(executable) -> bool:
'''
Check for use of stack canary
'''
elf = pixie.load(executable)
ok = False
for symbol in elf.dyn_symbols:
if symbol.name == b'__stack_chk_fail':
ok = True
return ok
def check_ELF_separate_code(executable):
'''
Check that sections are appropriately separated in virtual memory,
based on their permissions. This checks for missing -Wl,-z,separate-code
and potentially other problems.
'''
elf = pixie.load(executable)
R = pixie.PF_R
W = pixie.PF_W
E = pixie.PF_X
EXPECTED_FLAGS = {
# Read + execute
b'.init': R | E,
b'.plt': R | E,
b'.plt.got': R | E,
b'.plt.sec': R | E,
b'.text': R | E,
b'.fini': R | E,
# Read-only data
b'.interp': R,
b'.note.gnu.property': R,
b'.note.gnu.build-id': R,
b'.note.ABI-tag': R,
b'.gnu.hash': R,
b'.dynsym': R,
b'.dynstr': R,
b'.gnu.version': R,
b'.gnu.version_r': R,
b'.rela.dyn': R,
b'.rela.plt': R,
b'.rodata': R,
b'.eh_frame_hdr': R,
b'.eh_frame': R,
b'.qtmetadata': R,
b'.gcc_except_table': R,
b'.stapsdt.base': R,
# Writable data
b'.init_array': R | W,
b'.fini_array': R | W,
b'.dynamic': R | W,
b'.got': R | W,
b'.data': R | W,
b'.bss': R | W,
}
if elf.hdr.e_machine == pixie.EM_PPC64:
# .plt is RW on ppc64 even with separate-code
EXPECTED_FLAGS[b'.plt'] = R | W
# For all LOAD program headers get mapping to the list of sections,
# and for each section, remember the flags of the associated program header.
flags_per_section = {}
for ph in elf.program_headers:
if ph.p_type == pixie.PT_LOAD:
for section in ph.sections:
assert(section.name not in flags_per_section)
flags_per_section[section.name] = ph.p_flags
# Spot-check ELF LOAD program header flags per section
# If these sections exist, check them against the expected R/W/E flags
for (section, flags) in flags_per_section.items():
if section in EXPECTED_FLAGS:
if EXPECTED_FLAGS[section] != flags:
return False
return True
def check_PE_DYNAMIC_BASE(executable) -> bool:
'''PIE: DllCharacteristics bit 0x40 signifies dynamicbase (ASLR)'''
binary = lief.parse(executable)
return lief.PE.DLL_CHARACTERISTICS.DYNAMIC_BASE in binary.optional_header.dll_characteristics_lists
# Must support high-entropy 64-bit address space layout randomization
# in addition to DYNAMIC_BASE to have secure ASLR.
def check_PE_HIGH_ENTROPY_VA(executable) -> bool:
'''PIE: DllCharacteristics bit 0x20 signifies high-entropy ASLR'''
binary = lief.parse(executable)
return lief.PE.DLL_CHARACTERISTICS.HIGH_ENTROPY_VA in binary.optional_header.dll_characteristics_lists
def check_PE_RELOC_SECTION(executable) -> bool:
'''Check for a reloc section. This is required for functional ASLR.'''
binary = lief.parse(executable)
return binary.has_relocations
def check_MACHO_NOUNDEFS(executable) -> bool:
'''
Check for no undefined references.
'''
binary = lief.parse(executable)
return binary.header.has(lief.MachO.HEADER_FLAGS.NOUNDEFS)
def check_MACHO_LAZY_BINDINGS(executable) -> bool:
'''
Check for no lazy bindings.
We don't use or check for MH_BINDATLOAD. See #18295.
'''
binary = lief.parse(executable)
return binary.dyld_info.lazy_bind == (0,0)
def check_MACHO_Canary(executable) -> bool:
'''
Check for use of stack canary
'''
binary = lief.parse(executable)
return binary.has_symbol('___stack_chk_fail')
def check_PIE(executable) -> bool:
'''
Check for position independent executable (PIE),
allowing for address space randomization.
'''
binary = lief.parse(executable)
return binary.is_pie
def check_NX(executable) -> bool:
'''
Check for no stack execution
'''
binary = lief.parse(executable)
return binary.has_nx
CHECKS = {
'ELF': [
('PIE', check_ELF_PIE),
('NX', check_ELF_NX),
('RELRO', check_ELF_RELRO),
('Canary', check_ELF_Canary),
('separate_code', check_ELF_separate_code),
],
'PE': [
('PIE', check_PIE),
('DYNAMIC_BASE', check_PE_DYNAMIC_BASE),
('HIGH_ENTROPY_VA', check_PE_HIGH_ENTROPY_VA),
('NX', check_NX),
('RELOC_SECTION', check_PE_RELOC_SECTION)
],
'MACHO': [
('PIE', check_PIE),
('NOUNDEFS', check_MACHO_NOUNDEFS),
('NX', check_NX),
('LAZY_BINDINGS', check_MACHO_LAZY_BINDINGS),
('Canary', check_MACHO_Canary)
]
}
def identify_executable(executable) -> Optional[str]:
with open(filename, 'rb') as f:
magic = f.read(4)
if magic.startswith(b'MZ'):
return 'PE'
elif magic.startswith(b'\x7fELF'):
return 'ELF'
elif magic.startswith(b'\xcf\xfa'):
return 'MACHO'
return None
if __name__ == '__main__':
retval: int = 0
for filename in sys.argv[1:]:
try:
etype = identify_executable(filename)
if etype is None:
print(f'{filename}: unknown format')
retval = 1
continue
failed: List[str] = []
for (name, func) in CHECKS[etype]:
if not func(filename):
failed.append(name)
if failed:
print(f'{filename}: failed {" ".join(failed)}')
retval = 1
except IOError:
print(f'{filename}: cannot open')
retval = 1
sys.exit(retval)