bitcoin/src/util/sock.cpp
2021-09-11 10:47:02 +03:00

345 lines
9.7 KiB
C++

// Copyright (c) 2020-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <compat.h>
#include <logging.h>
#include <threadinterrupt.h>
#include <tinyformat.h>
#include <util/sock.h>
#include <util/system.h>
#include <util/time.h>
#include <stdexcept>
#include <string>
#ifdef WIN32
#include <codecvt>
#include <locale>
#endif
#ifdef USE_POLL
#include <poll.h>
#endif
static inline bool IOErrorIsPermanent(int err)
{
return err != WSAEAGAIN && err != WSAEINTR && err != WSAEWOULDBLOCK && err != WSAEINPROGRESS;
}
Sock::Sock() : m_socket(INVALID_SOCKET) {}
Sock::Sock(SOCKET s) : m_socket(s) {}
Sock::Sock(Sock&& other)
{
m_socket = other.m_socket;
other.m_socket = INVALID_SOCKET;
}
Sock::~Sock() { Reset(); }
Sock& Sock::operator=(Sock&& other)
{
Reset();
m_socket = other.m_socket;
other.m_socket = INVALID_SOCKET;
return *this;
}
SOCKET Sock::Get() const { return m_socket; }
SOCKET Sock::Release()
{
const SOCKET s = m_socket;
m_socket = INVALID_SOCKET;
return s;
}
void Sock::Reset() { CloseSocket(m_socket); }
ssize_t Sock::Send(const void* data, size_t len, int flags) const
{
return send(m_socket, static_cast<const char*>(data), len, flags);
}
ssize_t Sock::Recv(void* buf, size_t len, int flags) const
{
return recv(m_socket, static_cast<char*>(buf), len, flags);
}
int Sock::Connect(const sockaddr* addr, socklen_t addr_len) const
{
return connect(m_socket, addr, addr_len);
}
int Sock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
{
return getsockopt(m_socket, level, opt_name, static_cast<char*>(opt_val), opt_len);
}
bool Sock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
{
#ifdef USE_POLL
pollfd fd;
fd.fd = m_socket;
fd.events = 0;
if (requested & RECV) {
fd.events |= POLLIN;
}
if (requested & SEND) {
fd.events |= POLLOUT;
}
if (poll(&fd, 1, count_milliseconds(timeout)) == SOCKET_ERROR) {
return false;
}
if (occurred != nullptr) {
*occurred = 0;
if (fd.revents & POLLIN) {
*occurred |= RECV;
}
if (fd.revents & POLLOUT) {
*occurred |= SEND;
}
}
return true;
#else
if (!IsSelectableSocket(m_socket)) {
return false;
}
fd_set fdset_recv;
fd_set fdset_send;
FD_ZERO(&fdset_recv);
FD_ZERO(&fdset_send);
if (requested & RECV) {
FD_SET(m_socket, &fdset_recv);
}
if (requested & SEND) {
FD_SET(m_socket, &fdset_send);
}
timeval timeout_struct = MillisToTimeval(timeout);
if (select(m_socket + 1, &fdset_recv, &fdset_send, nullptr, &timeout_struct) == SOCKET_ERROR) {
return false;
}
if (occurred != nullptr) {
*occurred = 0;
if (FD_ISSET(m_socket, &fdset_recv)) {
*occurred |= RECV;
}
if (FD_ISSET(m_socket, &fdset_send)) {
*occurred |= SEND;
}
}
return true;
#endif /* USE_POLL */
}
void Sock::SendComplete(const std::string& data,
std::chrono::milliseconds timeout,
CThreadInterrupt& interrupt) const
{
const auto deadline = GetTime<std::chrono::milliseconds>() + timeout;
size_t sent{0};
for (;;) {
const ssize_t ret{Send(data.data() + sent, data.size() - sent, MSG_NOSIGNAL)};
if (ret > 0) {
sent += static_cast<size_t>(ret);
if (sent == data.size()) {
break;
}
} else {
const int err{WSAGetLastError()};
if (IOErrorIsPermanent(err)) {
throw std::runtime_error(strprintf("send(): %s", NetworkErrorString(err)));
}
}
const auto now = GetTime<std::chrono::milliseconds>();
if (now >= deadline) {
throw std::runtime_error(strprintf(
"Send timeout (sent only %u of %u bytes before that)", sent, data.size()));
}
if (interrupt) {
throw std::runtime_error(strprintf(
"Send interrupted (sent only %u of %u bytes before that)", sent, data.size()));
}
// Wait for a short while (or the socket to become ready for sending) before retrying
// if nothing was sent.
const auto wait_time = std::min(deadline - now, std::chrono::milliseconds{MAX_WAIT_FOR_IO});
(void)Wait(wait_time, SEND);
}
}
std::string Sock::RecvUntilTerminator(uint8_t terminator,
std::chrono::milliseconds timeout,
CThreadInterrupt& interrupt,
size_t max_data) const
{
const auto deadline = GetTime<std::chrono::milliseconds>() + timeout;
std::string data;
bool terminator_found{false};
// We must not consume any bytes past the terminator from the socket.
// One option is to read one byte at a time and check if we have read a terminator.
// However that is very slow. Instead, we peek at what is in the socket and only read
// as many bytes as possible without crossing the terminator.
// Reading 64 MiB of random data with 262526 terminator chars takes 37 seconds to read
// one byte at a time VS 0.71 seconds with the "peek" solution below. Reading one byte
// at a time is about 50 times slower.
for (;;) {
if (data.size() >= max_data) {
throw std::runtime_error(
strprintf("Received too many bytes without a terminator (%u)", data.size()));
}
char buf[512];
const ssize_t peek_ret{Recv(buf, std::min(sizeof(buf), max_data - data.size()), MSG_PEEK)};
switch (peek_ret) {
case -1: {
const int err{WSAGetLastError()};
if (IOErrorIsPermanent(err)) {
throw std::runtime_error(strprintf("recv(): %s", NetworkErrorString(err)));
}
break;
}
case 0:
throw std::runtime_error("Connection unexpectedly closed by peer");
default:
auto end = buf + peek_ret;
auto terminator_pos = std::find(buf, end, terminator);
terminator_found = terminator_pos != end;
const size_t try_len{terminator_found ? terminator_pos - buf + 1 :
static_cast<size_t>(peek_ret)};
const ssize_t read_ret{Recv(buf, try_len, 0)};
if (read_ret < 0 || static_cast<size_t>(read_ret) != try_len) {
throw std::runtime_error(
strprintf("recv() returned %u bytes on attempt to read %u bytes but previous "
"peek claimed %u bytes are available",
read_ret, try_len, peek_ret));
}
// Don't include the terminator in the output.
const size_t append_len{terminator_found ? try_len - 1 : try_len};
data.append(buf, buf + append_len);
if (terminator_found) {
return data;
}
}
const auto now = GetTime<std::chrono::milliseconds>();
if (now >= deadline) {
throw std::runtime_error(strprintf(
"Receive timeout (received %u bytes without terminator before that)", data.size()));
}
if (interrupt) {
throw std::runtime_error(strprintf(
"Receive interrupted (received %u bytes without terminator before that)",
data.size()));
}
// Wait for a short while (or the socket to become ready for reading) before retrying.
const auto wait_time = std::min(deadline - now, std::chrono::milliseconds{MAX_WAIT_FOR_IO});
(void)Wait(wait_time, RECV);
}
}
bool Sock::IsConnected(std::string& errmsg) const
{
if (m_socket == INVALID_SOCKET) {
errmsg = "not connected";
return false;
}
char c;
switch (Recv(&c, sizeof(c), MSG_PEEK)) {
case -1: {
const int err = WSAGetLastError();
if (IOErrorIsPermanent(err)) {
errmsg = NetworkErrorString(err);
return false;
}
return true;
}
case 0:
errmsg = "closed";
return false;
default:
return true;
}
}
#ifdef WIN32
std::string NetworkErrorString(int err)
{
wchar_t buf[256];
buf[0] = 0;
if(FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK,
nullptr, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
buf, ARRAYSIZE(buf), nullptr))
{
return strprintf("%s (%d)", std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>,wchar_t>().to_bytes(buf), err);
}
else
{
return strprintf("Unknown error (%d)", err);
}
}
#else
std::string NetworkErrorString(int err)
{
char buf[256];
buf[0] = 0;
/* Too bad there are two incompatible implementations of the
* thread-safe strerror. */
const char *s;
#ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */
s = strerror_r(err, buf, sizeof(buf));
#else /* POSIX variant always returns message in buffer */
s = buf;
if (strerror_r(err, buf, sizeof(buf)))
buf[0] = 0;
#endif
return strprintf("%s (%d)", s, err);
}
#endif
bool CloseSocket(SOCKET& hSocket)
{
if (hSocket == INVALID_SOCKET)
return false;
#ifdef WIN32
int ret = closesocket(hSocket);
#else
int ret = close(hSocket);
#endif
if (ret) {
LogPrintf("Socket close failed: %d. Error: %s\n", hSocket, NetworkErrorString(WSAGetLastError()));
}
hSocket = INVALID_SOCKET;
return ret != SOCKET_ERROR;
}