bitcoin/test/functional/p2p_addrv2_relay.py
John Newbery 2095df7b7b [addrman] Add Add_() inner function, fix Add() return semantics
Previously, Add() would return true if the function created a new
AddressInfo object, even if that object could not be successfully
entered into the new table and was deleted. That would happen if the new
table position was already taken and the existing entry could not be
removed.

Instead, return true if the new AddressInfo object is successfully
entered into the new table. This fixes a bug in the "Added %i addresses"
log, which would not always accurately log how many addresses had been
added.

p2p_addrv2_relay.py and p2p_addr_relay.py need to be updated since they
were incorrectly asserting on the buggy log (assuming that addresses are
added to addrman, when there could in fact be new table position
collisions that prevent some of those address records from being added).
2021-10-28 14:00:21 +01:00

87 lines
2.7 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""
Test addrv2 relay
"""
import time
from test_framework.messages import (
CAddress,
msg_addrv2,
)
from test_framework.p2p import (
P2PInterface,
P2P_SERVICES,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import assert_equal
I2P_ADDR = "c4gfnttsuwqomiygupdqqqyy5y5emnk5c73hrfvatri67prd7vyq.b32.i2p"
ADDRS = []
for i in range(10):
addr = CAddress()
addr.time = int(time.time()) + i
addr.nServices = P2P_SERVICES
# Add one I2P address at an arbitrary position.
if i == 5:
addr.net = addr.NET_I2P
addr.ip = I2P_ADDR
else:
addr.ip = f"123.123.123.{i % 256}"
addr.port = 8333 + i
ADDRS.append(addr)
class AddrReceiver(P2PInterface):
addrv2_received_and_checked = False
def __init__(self):
super().__init__(support_addrv2 = True)
def on_addrv2(self, message):
expected_set = set((addr.ip, addr.port) for addr in ADDRS)
received_set = set((addr.ip, addr.port) for addr in message.addrs)
if expected_set == received_set:
self.addrv2_received_and_checked = True
def wait_for_addrv2(self):
self.wait_until(lambda: "addrv2" in self.last_message)
class AddrTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 1
self.extra_args = [["-whitelist=addr@127.0.0.1"]]
def run_test(self):
self.log.info('Create connection that sends addrv2 messages')
addr_source = self.nodes[0].add_p2p_connection(P2PInterface())
msg = msg_addrv2()
self.log.info('Send too-large addrv2 message')
msg.addrs = ADDRS * 101
with self.nodes[0].assert_debug_log(['addrv2 message size = 1010']):
addr_source.send_and_ping(msg)
self.log.info('Check that addrv2 message content is relayed and added to addrman')
addr_receiver = self.nodes[0].add_p2p_connection(AddrReceiver())
msg.addrs = ADDRS
with self.nodes[0].assert_debug_log([
'received: addrv2 (159 bytes) peer=0',
'sending addrv2 (159 bytes) peer=1',
]):
addr_source.send_and_ping(msg)
self.nodes[0].setmocktime(int(time.time()) + 30 * 60)
addr_receiver.wait_for_addrv2()
assert addr_receiver.addrv2_received_and_checked
assert_equal(len(self.nodes[0].getnodeaddresses(count=0, network="i2p")), 0)
if __name__ == '__main__':
AddrTest().main()