bitcoin/src/test/pmt_tests.cpp
MarcoFalke fa488f131f
scripted-diff: Bump copyright headers
-BEGIN VERIFY SCRIPT-
./contrib/devtools/copyright_header.py update ./
-END VERIFY SCRIPT-
2020-04-16 13:33:09 -04:00

125 lines
4.3 KiB
C++

// Copyright (c) 2012-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <arith_uint256.h>
#include <consensus/merkle.h>
#include <merkleblock.h>
#include <serialize.h>
#include <streams.h>
#include <test/util/setup_common.h>
#include <uint256.h>
#include <version.h>
#include <vector>
#include <boost/test/unit_test.hpp>
class CPartialMerkleTreeTester : public CPartialMerkleTree
{
public:
// flip one bit in one of the hashes - this should break the authentication
void Damage() {
unsigned int n = InsecureRandRange(vHash.size());
int bit = InsecureRandBits(8);
*(vHash[n].begin() + (bit>>3)) ^= 1<<(bit&7);
}
};
BOOST_FIXTURE_TEST_SUITE(pmt_tests, BasicTestingSetup)
BOOST_AUTO_TEST_CASE(pmt_test1)
{
static const unsigned int nTxCounts[] = {1, 4, 7, 17, 56, 100, 127, 256, 312, 513, 1000, 4095};
for (int i = 0; i < 12; i++) {
unsigned int nTx = nTxCounts[i];
// build a block with some dummy transactions
CBlock block;
for (unsigned int j=0; j<nTx; j++) {
CMutableTransaction tx;
tx.nLockTime = j; // actual transaction data doesn't matter; just make the nLockTime's unique
block.vtx.push_back(MakeTransactionRef(std::move(tx)));
}
// calculate actual merkle root and height
uint256 merkleRoot1 = BlockMerkleRoot(block);
std::vector<uint256> vTxid(nTx, uint256());
for (unsigned int j=0; j<nTx; j++)
vTxid[j] = block.vtx[j]->GetHash();
int nHeight = 1, nTx_ = nTx;
while (nTx_ > 1) {
nTx_ = (nTx_+1)/2;
nHeight++;
}
// check with random subsets with inclusion chances 1, 1/2, 1/4, ..., 1/128
for (int att = 1; att < 15; att++) {
// build random subset of txid's
std::vector<bool> vMatch(nTx, false);
std::vector<uint256> vMatchTxid1;
for (unsigned int j=0; j<nTx; j++) {
bool fInclude = InsecureRandBits(att / 2) == 0;
vMatch[j] = fInclude;
if (fInclude)
vMatchTxid1.push_back(vTxid[j]);
}
// build the partial merkle tree
CPartialMerkleTree pmt1(vTxid, vMatch);
// serialize
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << pmt1;
// verify CPartialMerkleTree's size guarantees
unsigned int n = std::min<unsigned int>(nTx, 1 + vMatchTxid1.size()*nHeight);
BOOST_CHECK(ss.size() <= 10 + (258*n+7)/8);
// deserialize into a tester copy
CPartialMerkleTreeTester pmt2;
ss >> pmt2;
// extract merkle root and matched txids from copy
std::vector<uint256> vMatchTxid2;
std::vector<unsigned int> vIndex;
uint256 merkleRoot2 = pmt2.ExtractMatches(vMatchTxid2, vIndex);
// check that it has the same merkle root as the original, and a valid one
BOOST_CHECK(merkleRoot1 == merkleRoot2);
BOOST_CHECK(!merkleRoot2.IsNull());
// check that it contains the matched transactions (in the same order!)
BOOST_CHECK(vMatchTxid1 == vMatchTxid2);
// check that random bit flips break the authentication
for (int j=0; j<4; j++) {
CPartialMerkleTreeTester pmt3(pmt2);
pmt3.Damage();
std::vector<uint256> vMatchTxid3;
uint256 merkleRoot3 = pmt3.ExtractMatches(vMatchTxid3, vIndex);
BOOST_CHECK(merkleRoot3 != merkleRoot1);
}
}
}
}
BOOST_AUTO_TEST_CASE(pmt_malleability)
{
std::vector<uint256> vTxid = {
ArithToUint256(1), ArithToUint256(2),
ArithToUint256(3), ArithToUint256(4),
ArithToUint256(5), ArithToUint256(6),
ArithToUint256(7), ArithToUint256(8),
ArithToUint256(9), ArithToUint256(10),
ArithToUint256(9), ArithToUint256(10),
};
std::vector<bool> vMatch = {false, false, false, false, false, false, false, false, false, true, true, false};
CPartialMerkleTree tree(vTxid, vMatch);
std::vector<unsigned int> vIndex;
BOOST_CHECK(tree.ExtractMatches(vTxid, vIndex).IsNull());
}
BOOST_AUTO_TEST_SUITE_END()