bitcoin/src/i2p.cpp
fanquake ec5116ae14
Merge bitcoin/bitcoin#28695: net: Sanity check private keys received from SAM proxy
5cf4d266d9 [test] Test i2p private key constraints (Vasil Dimov)
cf70a8d565 [net] Check i2p private key constraints (dergoegge)

Pull request description:

  Not sanity checking can lead to crashes or worse:

  ```
  ==1715589==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6140000055c2 at pc 0x5622ed66e7ad bp 0x7ffee547a2c0 sp 0x7ffee547a2b8
  READ of size 2 at 0x6140000055c2 thread T0 (b-test)
      #0 0x5622ed66e7ac in memcpy include/bits/string_fortified.h:29:10
      #1 0x5622ed66e7ac in i2p::sam::Session::MyDestination() const src/i2p.cpp:362:5
      #2 0x5622ed662e46 in i2p::sam::Session::CreateIfNotCreatedAlready() src/i2p.cpp:414:40
      #3 0x5622ed6619f2 in i2p::sam::Session::Listen(i2p::Connection&) src/i2p.cpp:143:9
  ```

ACKs for top commit:
  maflcko:
    code lgtm ACK 5cf4d266d9
  stickies-v:
    re-ACK 5cf4d266d9
  vasild:
    ACK 5cf4d266d9

Tree-SHA512: 3de3bd396538fa619de67957b9c8a58011ab911f0f51097c387e730c13908278b7322aa3357051fb245a20b15bef34b0e9fadcb1eff8ad751139d2aa634c78ad
2023-10-30 14:44:40 +01:00

497 lines
15 KiB
C++

// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <chainparams.h>
#include <common/args.h>
#include <compat/compat.h>
#include <compat/endian.h>
#include <crypto/sha256.h>
#include <i2p.h>
#include <logging.h>
#include <netaddress.h>
#include <netbase.h>
#include <random.h>
#include <sync.h>
#include <tinyformat.h>
#include <util/fs.h>
#include <util/readwritefile.h>
#include <util/sock.h>
#include <util/spanparsing.h>
#include <util/strencodings.h>
#include <util/threadinterrupt.h>
#include <chrono>
#include <memory>
#include <stdexcept>
#include <string>
namespace i2p {
/**
* Swap Standard Base64 <-> I2P Base64.
* Standard Base64 uses `+` and `/` as last two characters of its alphabet.
* I2P Base64 uses `-` and `~` respectively.
* So it is easy to detect in which one is the input and convert to the other.
* @param[in] from Input to convert.
* @return converted `from`
*/
static std::string SwapBase64(const std::string& from)
{
std::string to;
to.resize(from.size());
for (size_t i = 0; i < from.size(); ++i) {
switch (from[i]) {
case '-':
to[i] = '+';
break;
case '~':
to[i] = '/';
break;
case '+':
to[i] = '-';
break;
case '/':
to[i] = '~';
break;
default:
to[i] = from[i];
break;
}
}
return to;
}
/**
* Decode an I2P-style Base64 string.
* @param[in] i2p_b64 I2P-style Base64 string.
* @return decoded `i2p_b64`
* @throw std::runtime_error if decoding fails
*/
static Binary DecodeI2PBase64(const std::string& i2p_b64)
{
const std::string& std_b64 = SwapBase64(i2p_b64);
auto decoded = DecodeBase64(std_b64);
if (!decoded) {
throw std::runtime_error(strprintf("Cannot decode Base64: \"%s\"", i2p_b64));
}
return std::move(*decoded);
}
/**
* Derive the .b32.i2p address of an I2P destination (binary).
* @param[in] dest I2P destination.
* @return the address that corresponds to `dest`
* @throw std::runtime_error if conversion fails
*/
static CNetAddr DestBinToAddr(const Binary& dest)
{
CSHA256 hasher;
hasher.Write(dest.data(), dest.size());
unsigned char hash[CSHA256::OUTPUT_SIZE];
hasher.Finalize(hash);
CNetAddr addr;
const std::string addr_str = EncodeBase32(hash, false) + ".b32.i2p";
if (!addr.SetSpecial(addr_str)) {
throw std::runtime_error(strprintf("Cannot parse I2P address: \"%s\"", addr_str));
}
return addr;
}
/**
* Derive the .b32.i2p address of an I2P destination (I2P-style Base64).
* @param[in] dest I2P destination.
* @return the address that corresponds to `dest`
* @throw std::runtime_error if conversion fails
*/
static CNetAddr DestB64ToAddr(const std::string& dest)
{
const Binary& decoded = DecodeI2PBase64(dest);
return DestBinToAddr(decoded);
}
namespace sam {
Session::Session(const fs::path& private_key_file,
const CService& control_host,
CThreadInterrupt* interrupt)
: m_private_key_file{private_key_file},
m_control_host{control_host},
m_interrupt{interrupt},
m_transient{false}
{
}
Session::Session(const CService& control_host, CThreadInterrupt* interrupt)
: m_control_host{control_host},
m_interrupt{interrupt},
m_transient{true}
{
}
Session::~Session()
{
LOCK(m_mutex);
Disconnect();
}
bool Session::Listen(Connection& conn)
{
try {
LOCK(m_mutex);
CreateIfNotCreatedAlready();
conn.me = m_my_addr;
conn.sock = StreamAccept();
return true;
} catch (const std::runtime_error& e) {
Log("Error listening: %s", e.what());
CheckControlSock();
}
return false;
}
bool Session::Accept(Connection& conn)
{
AssertLockNotHeld(m_mutex);
std::string errmsg;
bool disconnect{false};
while (!*m_interrupt) {
Sock::Event occurred;
if (!conn.sock->Wait(MAX_WAIT_FOR_IO, Sock::RECV, &occurred)) {
errmsg = "wait on socket failed";
break;
}
if (occurred == 0) {
// Timeout, no incoming connections or errors within MAX_WAIT_FOR_IO.
continue;
}
std::string peer_dest;
try {
peer_dest = conn.sock->RecvUntilTerminator('\n', MAX_WAIT_FOR_IO, *m_interrupt, MAX_MSG_SIZE);
} catch (const std::runtime_error& e) {
errmsg = e.what();
break;
}
CNetAddr peer_addr;
try {
peer_addr = DestB64ToAddr(peer_dest);
} catch (const std::runtime_error& e) {
// The I2P router is expected to send the Base64 of the connecting peer,
// but it may happen that something like this is sent instead:
// STREAM STATUS RESULT=I2P_ERROR MESSAGE="Session was closed"
// In that case consider the session damaged and close it right away,
// even if the control socket is alive.
if (peer_dest.find("RESULT=I2P_ERROR") != std::string::npos) {
errmsg = strprintf("unexpected reply that hints the session is unusable: %s", peer_dest);
disconnect = true;
} else {
errmsg = e.what();
}
break;
}
conn.peer = CService(peer_addr, I2P_SAM31_PORT);
return true;
}
Log("Error accepting%s: %s", disconnect ? " (will close the session)" : "", errmsg);
if (disconnect) {
LOCK(m_mutex);
Disconnect();
} else {
CheckControlSock();
}
return false;
}
bool Session::Connect(const CService& to, Connection& conn, bool& proxy_error)
{
// Refuse connecting to arbitrary ports. We don't specify any destination port to the SAM proxy
// when connecting (SAM 3.1 does not use ports) and it forces/defaults it to I2P_SAM31_PORT.
if (to.GetPort() != I2P_SAM31_PORT) {
proxy_error = false;
return false;
}
proxy_error = true;
std::string session_id;
std::unique_ptr<Sock> sock;
conn.peer = to;
try {
{
LOCK(m_mutex);
CreateIfNotCreatedAlready();
session_id = m_session_id;
conn.me = m_my_addr;
sock = Hello();
}
const Reply& lookup_reply =
SendRequestAndGetReply(*sock, strprintf("NAMING LOOKUP NAME=%s", to.ToStringAddr()));
const std::string& dest = lookup_reply.Get("VALUE");
const Reply& connect_reply = SendRequestAndGetReply(
*sock, strprintf("STREAM CONNECT ID=%s DESTINATION=%s SILENT=false", session_id, dest),
false);
const std::string& result = connect_reply.Get("RESULT");
if (result == "OK") {
conn.sock = std::move(sock);
return true;
}
if (result == "INVALID_ID") {
LOCK(m_mutex);
Disconnect();
throw std::runtime_error("Invalid session id");
}
if (result == "CANT_REACH_PEER" || result == "TIMEOUT") {
proxy_error = false;
}
throw std::runtime_error(strprintf("\"%s\"", connect_reply.full));
} catch (const std::runtime_error& e) {
Log("Error connecting to %s: %s", to.ToStringAddrPort(), e.what());
CheckControlSock();
return false;
}
}
// Private methods
std::string Session::Reply::Get(const std::string& key) const
{
const auto& pos = keys.find(key);
if (pos == keys.end() || !pos->second.has_value()) {
throw std::runtime_error(
strprintf("Missing %s= in the reply to \"%s\": \"%s\"", key, request, full));
}
return pos->second.value();
}
template <typename... Args>
void Session::Log(const std::string& fmt, const Args&... args) const
{
LogPrint(BCLog::I2P, "%s\n", tfm::format(fmt, args...));
}
Session::Reply Session::SendRequestAndGetReply(const Sock& sock,
const std::string& request,
bool check_result_ok) const
{
sock.SendComplete(request + "\n", MAX_WAIT_FOR_IO, *m_interrupt);
Reply reply;
// Don't log the full "SESSION CREATE ..." because it contains our private key.
reply.request = request.substr(0, 14) == "SESSION CREATE" ? "SESSION CREATE ..." : request;
// It could take a few minutes for the I2P router to reply as it is querying the I2P network
// (when doing name lookup, for example). Notice: `RecvUntilTerminator()` is checking
// `m_interrupt` more often, so we would not be stuck here for long if `m_interrupt` is
// signaled.
static constexpr auto recv_timeout = 3min;
reply.full = sock.RecvUntilTerminator('\n', recv_timeout, *m_interrupt, MAX_MSG_SIZE);
for (const auto& kv : spanparsing::Split(reply.full, ' ')) {
const auto& pos = std::find(kv.begin(), kv.end(), '=');
if (pos != kv.end()) {
reply.keys.emplace(std::string{kv.begin(), pos}, std::string{pos + 1, kv.end()});
} else {
reply.keys.emplace(std::string{kv.begin(), kv.end()}, std::nullopt);
}
}
if (check_result_ok && reply.Get("RESULT") != "OK") {
throw std::runtime_error(
strprintf("Unexpected reply to \"%s\": \"%s\"", request, reply.full));
}
return reply;
}
std::unique_ptr<Sock> Session::Hello() const
{
auto sock = CreateSock(m_control_host);
if (!sock) {
throw std::runtime_error("Cannot create socket");
}
if (!ConnectSocketDirectly(m_control_host, *sock, nConnectTimeout, true)) {
throw std::runtime_error(strprintf("Cannot connect to %s", m_control_host.ToStringAddrPort()));
}
SendRequestAndGetReply(*sock, "HELLO VERSION MIN=3.1 MAX=3.1");
return sock;
}
void Session::CheckControlSock()
{
LOCK(m_mutex);
std::string errmsg;
if (m_control_sock && !m_control_sock->IsConnected(errmsg)) {
Log("Control socket error: %s", errmsg);
Disconnect();
}
}
void Session::DestGenerate(const Sock& sock)
{
// https://geti2p.net/spec/common-structures#key-certificates
// "7" or "EdDSA_SHA512_Ed25519" - "Recent Router Identities and Destinations".
// Use "7" because i2pd <2.24.0 does not recognize the textual form.
// If SIGNATURE_TYPE is not specified, then the default one is DSA_SHA1.
const Reply& reply = SendRequestAndGetReply(sock, "DEST GENERATE SIGNATURE_TYPE=7", false);
m_private_key = DecodeI2PBase64(reply.Get("PRIV"));
}
void Session::GenerateAndSavePrivateKey(const Sock& sock)
{
DestGenerate(sock);
// umask is set to 0077 in common/system.cpp, which is ok.
if (!WriteBinaryFile(m_private_key_file,
std::string(m_private_key.begin(), m_private_key.end()))) {
throw std::runtime_error(
strprintf("Cannot save I2P private key to %s", fs::quoted(fs::PathToString(m_private_key_file))));
}
}
Binary Session::MyDestination() const
{
// From https://geti2p.net/spec/common-structures#destination:
// "They are 387 bytes plus the certificate length specified at bytes 385-386, which may be
// non-zero"
static constexpr size_t DEST_LEN_BASE = 387;
static constexpr size_t CERT_LEN_POS = 385;
uint16_t cert_len;
if (m_private_key.size() < CERT_LEN_POS + sizeof(cert_len)) {
throw std::runtime_error(strprintf("The private key is too short (%d < %d)",
m_private_key.size(),
CERT_LEN_POS + sizeof(cert_len)));
}
memcpy(&cert_len, &m_private_key.at(CERT_LEN_POS), sizeof(cert_len));
cert_len = be16toh(cert_len);
const size_t dest_len = DEST_LEN_BASE + cert_len;
if (dest_len > m_private_key.size()) {
throw std::runtime_error(strprintf("Certificate length (%d) designates that the private key should "
"be %d bytes, but it is only %d bytes",
cert_len,
dest_len,
m_private_key.size()));
}
return Binary{m_private_key.begin(), m_private_key.begin() + dest_len};
}
void Session::CreateIfNotCreatedAlready()
{
std::string errmsg;
if (m_control_sock && m_control_sock->IsConnected(errmsg)) {
return;
}
const auto session_type = m_transient ? "transient" : "persistent";
const auto session_id = GetRandHash().GetHex().substr(0, 10); // full is overkill, too verbose in the logs
Log("Creating %s SAM session %s with %s", session_type, session_id, m_control_host.ToStringAddrPort());
auto sock = Hello();
if (m_transient) {
// The destination (private key) is generated upon session creation and returned
// in the reply in DESTINATION=.
const Reply& reply = SendRequestAndGetReply(
*sock,
strprintf("SESSION CREATE STYLE=STREAM ID=%s DESTINATION=TRANSIENT SIGNATURE_TYPE=7 "
"inbound.quantity=1 outbound.quantity=1",
session_id));
m_private_key = DecodeI2PBase64(reply.Get("DESTINATION"));
} else {
// Read our persistent destination (private key) from disk or generate
// one and save it to disk. Then use it when creating the session.
const auto& [read_ok, data] = ReadBinaryFile(m_private_key_file);
if (read_ok) {
m_private_key.assign(data.begin(), data.end());
} else {
GenerateAndSavePrivateKey(*sock);
}
const std::string& private_key_b64 = SwapBase64(EncodeBase64(m_private_key));
SendRequestAndGetReply(*sock,
strprintf("SESSION CREATE STYLE=STREAM ID=%s DESTINATION=%s "
"inbound.quantity=3 outbound.quantity=3",
session_id,
private_key_b64));
}
m_my_addr = CService(DestBinToAddr(MyDestination()), I2P_SAM31_PORT);
m_session_id = session_id;
m_control_sock = std::move(sock);
Log("%s SAM session %s created, my address=%s",
Capitalize(session_type),
m_session_id,
m_my_addr.ToStringAddrPort());
}
std::unique_ptr<Sock> Session::StreamAccept()
{
auto sock = Hello();
const Reply& reply = SendRequestAndGetReply(
*sock, strprintf("STREAM ACCEPT ID=%s SILENT=false", m_session_id), false);
const std::string& result = reply.Get("RESULT");
if (result == "OK") {
return sock;
}
if (result == "INVALID_ID") {
// If our session id is invalid, then force session re-creation on next usage.
Disconnect();
}
throw std::runtime_error(strprintf("\"%s\"", reply.full));
}
void Session::Disconnect()
{
if (m_control_sock) {
if (m_session_id.empty()) {
Log("Destroying incomplete SAM session");
} else {
Log("Destroying SAM session %s", m_session_id);
}
m_control_sock.reset();
}
m_session_id.clear();
}
} // namespace sam
} // namespace i2p