bitcoin/src/wallet/scriptpubkeyman.cpp
Samuel Dobson 89899a3448
Merge #19046: Replace CWallet::Set* functions that use memonly with Add/Load variants
3a9aba21a4 Split SetWalletFlags into Add/LoadWalletFlags (Andrew Chow)
d9cd095b59 Split SetActiveScriptPubKeyMan into Add/LoadActiveScriptPubKeyMan (Andrew Chow)
0122fbab4c Split SetHDChain into AddHDChain and LoadHDChain (Andrew Chow)

Pull request description:

  `SetHDChaiin`, `SetActiveScriptPubKeyMan`, and `SetWalletFlags` have a `memonly` argument which is kind of confusing, as noted in https://github.com/bitcoin/bitcoin/pull/17681#discussion_r427633081. This PR replaces those functions with `Add*` and `Load*` variants so that they follow the pattern used elsewhere in the wallet.

  `AddHDChain`, `AddActiveScriptPubKeyMan`, and `AddWalletFlags` both set their respective variables in `CWallet` and writes them to disk. These functions are used by the actions which modify the wallet such as `sethdseed`, `importdescriptors`, and creating a new wallet.

  `LoadHDChain`, `LoadActiveScriptPubKeyMan`, and `LoadWalletFlags` just set the `CWallet` variables. These functions are used by `LoadWallet` when loading the wallet from disk.

ACKs for top commit:
  jnewbery:
    Code review ACK 3a9aba21a4
  ryanofsky:
    Code review ACK 3a9aba21a4. Only changes since last review tweaks making m_wallet_flags updates more safe
  meshcollider:
    utACK 3a9aba21a4

Tree-SHA512: 365aeaafc5ba42879c0eb797ec3beb29ab70e27f917dc880763f743420b3be6ddf797240996beed8a9ad70fb212c2590253c6b44c9dc244529c3939d9538983f
2020-07-11 23:08:54 +12:00

2256 lines
79 KiB
C++

// Copyright (c) 2019-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <key_io.h>
#include <outputtype.h>
#include <script/descriptor.h>
#include <script/sign.h>
#include <util/bip32.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <util/translation.h>
#include <wallet/scriptpubkeyman.h>
//! Value for the first BIP 32 hardened derivation. Can be used as a bit mask and as a value. See BIP 32 for more details.
const uint32_t BIP32_HARDENED_KEY_LIMIT = 0x80000000;
bool LegacyScriptPubKeyMan::GetNewDestination(const OutputType type, CTxDestination& dest, std::string& error)
{
LOCK(cs_KeyStore);
error.clear();
// Generate a new key that is added to wallet
CPubKey new_key;
if (!GetKeyFromPool(new_key, type)) {
error = _("Error: Keypool ran out, please call keypoolrefill first").translated;
return false;
}
LearnRelatedScripts(new_key, type);
dest = GetDestinationForKey(new_key, type);
return true;
}
typedef std::vector<unsigned char> valtype;
namespace {
/**
* This is an enum that tracks the execution context of a script, similar to
* SigVersion in script/interpreter. It is separate however because we want to
* distinguish between top-level scriptPubKey execution and P2SH redeemScript
* execution (a distinction that has no impact on consensus rules).
*/
enum class IsMineSigVersion
{
TOP = 0, //!< scriptPubKey execution
P2SH = 1, //!< P2SH redeemScript
WITNESS_V0 = 2, //!< P2WSH witness script execution
};
/**
* This is an internal representation of isminetype + invalidity.
* Its order is significant, as we return the max of all explored
* possibilities.
*/
enum class IsMineResult
{
NO = 0, //!< Not ours
WATCH_ONLY = 1, //!< Included in watch-only balance
SPENDABLE = 2, //!< Included in all balances
INVALID = 3, //!< Not spendable by anyone (uncompressed pubkey in segwit, P2SH inside P2SH or witness, witness inside witness)
};
bool PermitsUncompressed(IsMineSigVersion sigversion)
{
return sigversion == IsMineSigVersion::TOP || sigversion == IsMineSigVersion::P2SH;
}
bool HaveKeys(const std::vector<valtype>& pubkeys, const LegacyScriptPubKeyMan& keystore)
{
for (const valtype& pubkey : pubkeys) {
CKeyID keyID = CPubKey(pubkey).GetID();
if (!keystore.HaveKey(keyID)) return false;
}
return true;
}
//! Recursively solve script and return spendable/watchonly/invalid status.
//!
//! @param keystore legacy key and script store
//! @param script script to solve
//! @param sigversion script type (top-level / redeemscript / witnessscript)
//! @param recurse_scripthash whether to recurse into nested p2sh and p2wsh
//! scripts or simply treat any script that has been
//! stored in the keystore as spendable
IsMineResult IsMineInner(const LegacyScriptPubKeyMan& keystore, const CScript& scriptPubKey, IsMineSigVersion sigversion, bool recurse_scripthash=true)
{
IsMineResult ret = IsMineResult::NO;
std::vector<valtype> vSolutions;
TxoutType whichType = Solver(scriptPubKey, vSolutions);
CKeyID keyID;
switch (whichType)
{
case TxoutType::NONSTANDARD:
case TxoutType::NULL_DATA:
case TxoutType::WITNESS_UNKNOWN:
break;
case TxoutType::PUBKEY:
keyID = CPubKey(vSolutions[0]).GetID();
if (!PermitsUncompressed(sigversion) && vSolutions[0].size() != 33) {
return IsMineResult::INVALID;
}
if (keystore.HaveKey(keyID)) {
ret = std::max(ret, IsMineResult::SPENDABLE);
}
break;
case TxoutType::WITNESS_V0_KEYHASH:
{
if (sigversion == IsMineSigVersion::WITNESS_V0) {
// P2WPKH inside P2WSH is invalid.
return IsMineResult::INVALID;
}
if (sigversion == IsMineSigVersion::TOP && !keystore.HaveCScript(CScriptID(CScript() << OP_0 << vSolutions[0]))) {
// We do not support bare witness outputs unless the P2SH version of it would be
// acceptable as well. This protects against matching before segwit activates.
// This also applies to the P2WSH case.
break;
}
ret = std::max(ret, IsMineInner(keystore, GetScriptForDestination(PKHash(uint160(vSolutions[0]))), IsMineSigVersion::WITNESS_V0));
break;
}
case TxoutType::PUBKEYHASH:
keyID = CKeyID(uint160(vSolutions[0]));
if (!PermitsUncompressed(sigversion)) {
CPubKey pubkey;
if (keystore.GetPubKey(keyID, pubkey) && !pubkey.IsCompressed()) {
return IsMineResult::INVALID;
}
}
if (keystore.HaveKey(keyID)) {
ret = std::max(ret, IsMineResult::SPENDABLE);
}
break;
case TxoutType::SCRIPTHASH:
{
if (sigversion != IsMineSigVersion::TOP) {
// P2SH inside P2WSH or P2SH is invalid.
return IsMineResult::INVALID;
}
CScriptID scriptID = CScriptID(uint160(vSolutions[0]));
CScript subscript;
if (keystore.GetCScript(scriptID, subscript)) {
ret = std::max(ret, recurse_scripthash ? IsMineInner(keystore, subscript, IsMineSigVersion::P2SH) : IsMineResult::SPENDABLE);
}
break;
}
case TxoutType::WITNESS_V0_SCRIPTHASH:
{
if (sigversion == IsMineSigVersion::WITNESS_V0) {
// P2WSH inside P2WSH is invalid.
return IsMineResult::INVALID;
}
if (sigversion == IsMineSigVersion::TOP && !keystore.HaveCScript(CScriptID(CScript() << OP_0 << vSolutions[0]))) {
break;
}
uint160 hash;
CRIPEMD160().Write(&vSolutions[0][0], vSolutions[0].size()).Finalize(hash.begin());
CScriptID scriptID = CScriptID(hash);
CScript subscript;
if (keystore.GetCScript(scriptID, subscript)) {
ret = std::max(ret, recurse_scripthash ? IsMineInner(keystore, subscript, IsMineSigVersion::WITNESS_V0) : IsMineResult::SPENDABLE);
}
break;
}
case TxoutType::MULTISIG:
{
// Never treat bare multisig outputs as ours (they can still be made watchonly-though)
if (sigversion == IsMineSigVersion::TOP) {
break;
}
// Only consider transactions "mine" if we own ALL the
// keys involved. Multi-signature transactions that are
// partially owned (somebody else has a key that can spend
// them) enable spend-out-from-under-you attacks, especially
// in shared-wallet situations.
std::vector<valtype> keys(vSolutions.begin()+1, vSolutions.begin()+vSolutions.size()-1);
if (!PermitsUncompressed(sigversion)) {
for (size_t i = 0; i < keys.size(); i++) {
if (keys[i].size() != 33) {
return IsMineResult::INVALID;
}
}
}
if (HaveKeys(keys, keystore)) {
ret = std::max(ret, IsMineResult::SPENDABLE);
}
break;
}
}
if (ret == IsMineResult::NO && keystore.HaveWatchOnly(scriptPubKey)) {
ret = std::max(ret, IsMineResult::WATCH_ONLY);
}
return ret;
}
} // namespace
isminetype LegacyScriptPubKeyMan::IsMine(const CScript& script) const
{
switch (IsMineInner(*this, script, IsMineSigVersion::TOP)) {
case IsMineResult::INVALID:
case IsMineResult::NO:
return ISMINE_NO;
case IsMineResult::WATCH_ONLY:
return ISMINE_WATCH_ONLY;
case IsMineResult::SPENDABLE:
return ISMINE_SPENDABLE;
}
assert(false);
}
bool LegacyScriptPubKeyMan::CheckDecryptionKey(const CKeyingMaterial& master_key, bool accept_no_keys)
{
{
LOCK(cs_KeyStore);
assert(mapKeys.empty());
bool keyPass = mapCryptedKeys.empty(); // Always pass when there are no encrypted keys
bool keyFail = false;
CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin();
WalletBatch batch(m_storage.GetDatabase());
for (; mi != mapCryptedKeys.end(); ++mi)
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
CKey key;
if (!DecryptKey(master_key, vchCryptedSecret, vchPubKey, key))
{
keyFail = true;
break;
}
keyPass = true;
if (fDecryptionThoroughlyChecked)
break;
else {
// Rewrite these encrypted keys with checksums
batch.WriteCryptedKey(vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]);
}
}
if (keyPass && keyFail)
{
LogPrintf("The wallet is probably corrupted: Some keys decrypt but not all.\n");
throw std::runtime_error("Error unlocking wallet: some keys decrypt but not all. Your wallet file may be corrupt.");
}
if (keyFail || (!keyPass && !accept_no_keys))
return false;
fDecryptionThoroughlyChecked = true;
}
return true;
}
bool LegacyScriptPubKeyMan::Encrypt(const CKeyingMaterial& master_key, WalletBatch* batch)
{
LOCK(cs_KeyStore);
encrypted_batch = batch;
if (!mapCryptedKeys.empty()) {
encrypted_batch = nullptr;
return false;
}
KeyMap keys_to_encrypt;
keys_to_encrypt.swap(mapKeys); // Clear mapKeys so AddCryptedKeyInner will succeed.
for (const KeyMap::value_type& mKey : keys_to_encrypt)
{
const CKey &key = mKey.second;
CPubKey vchPubKey = key.GetPubKey();
CKeyingMaterial vchSecret(key.begin(), key.end());
std::vector<unsigned char> vchCryptedSecret;
if (!EncryptSecret(master_key, vchSecret, vchPubKey.GetHash(), vchCryptedSecret)) {
encrypted_batch = nullptr;
return false;
}
if (!AddCryptedKey(vchPubKey, vchCryptedSecret)) {
encrypted_batch = nullptr;
return false;
}
}
encrypted_batch = nullptr;
return true;
}
bool LegacyScriptPubKeyMan::GetReservedDestination(const OutputType type, bool internal, CTxDestination& address, int64_t& index, CKeyPool& keypool)
{
LOCK(cs_KeyStore);
if (!CanGetAddresses(internal)) {
return false;
}
if (!ReserveKeyFromKeyPool(index, keypool, internal)) {
return false;
}
address = GetDestinationForKey(keypool.vchPubKey, type);
return true;
}
bool LegacyScriptPubKeyMan::TopUpInactiveHDChain(const CKeyID seed_id, int64_t index, bool internal)
{
LOCK(cs_KeyStore);
if (m_storage.IsLocked()) return false;
auto it = m_inactive_hd_chains.find(seed_id);
if (it == m_inactive_hd_chains.end()) {
return false;
}
CHDChain& chain = it->second;
// Top up key pool
int64_t target_size = std::max(gArgs.GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 1);
// "size" of the keypools. Not really the size, actually the difference between index and the chain counter
// Since chain counter is 1 based and index is 0 based, one of them needs to be offset by 1.
int64_t kp_size = (internal ? chain.nInternalChainCounter : chain.nExternalChainCounter) - (index + 1);
// make sure the keypool fits the user-selected target (-keypool)
int64_t missing = std::max(target_size - kp_size, (int64_t) 0);
if (missing > 0) {
WalletBatch batch(m_storage.GetDatabase());
for (int64_t i = missing; i > 0; --i) {
GenerateNewKey(batch, chain, internal);
}
if (internal) {
WalletLogPrintf("inactive seed with id %s added %d internal keys\n", HexStr(seed_id), missing);
} else {
WalletLogPrintf("inactive seed with id %s added %d keys\n", HexStr(seed_id), missing);
}
}
return true;
}
void LegacyScriptPubKeyMan::MarkUnusedAddresses(const CScript& script)
{
LOCK(cs_KeyStore);
// extract addresses and check if they match with an unused keypool key
for (const auto& keyid : GetAffectedKeys(script, *this)) {
std::map<CKeyID, int64_t>::const_iterator mi = m_pool_key_to_index.find(keyid);
if (mi != m_pool_key_to_index.end()) {
WalletLogPrintf("%s: Detected a used keypool key, mark all keypool keys up to this key as used\n", __func__);
MarkReserveKeysAsUsed(mi->second);
if (!TopUp()) {
WalletLogPrintf("%s: Topping up keypool failed (locked wallet)\n", __func__);
}
}
// Find the key's metadata and check if it's seed id (if it has one) is inactive, i.e. it is not the current m_hd_chain seed id.
// If so, TopUp the inactive hd chain
auto it = mapKeyMetadata.find(keyid);
if (it != mapKeyMetadata.end()){
CKeyMetadata meta = it->second;
if (!meta.hd_seed_id.IsNull() && meta.hd_seed_id != m_hd_chain.seed_id) {
bool internal = (meta.key_origin.path[1] & ~BIP32_HARDENED_KEY_LIMIT) != 0;
int64_t index = meta.key_origin.path[2] & ~BIP32_HARDENED_KEY_LIMIT;
if (!TopUpInactiveHDChain(meta.hd_seed_id, index, internal)) {
WalletLogPrintf("%s: Adding inactive seed keys failed\n", __func__);
}
}
}
}
}
void LegacyScriptPubKeyMan::UpgradeKeyMetadata()
{
LOCK(cs_KeyStore);
if (m_storage.IsLocked() || m_storage.IsWalletFlagSet(WALLET_FLAG_KEY_ORIGIN_METADATA)) {
return;
}
std::unique_ptr<WalletBatch> batch = MakeUnique<WalletBatch>(m_storage.GetDatabase());
for (auto& meta_pair : mapKeyMetadata) {
CKeyMetadata& meta = meta_pair.second;
if (!meta.hd_seed_id.IsNull() && !meta.has_key_origin && meta.hdKeypath != "s") { // If the hdKeypath is "s", that's the seed and it doesn't have a key origin
CKey key;
GetKey(meta.hd_seed_id, key);
CExtKey masterKey;
masterKey.SetSeed(key.begin(), key.size());
// Add to map
CKeyID master_id = masterKey.key.GetPubKey().GetID();
std::copy(master_id.begin(), master_id.begin() + 4, meta.key_origin.fingerprint);
if (!ParseHDKeypath(meta.hdKeypath, meta.key_origin.path)) {
throw std::runtime_error("Invalid stored hdKeypath");
}
meta.has_key_origin = true;
if (meta.nVersion < CKeyMetadata::VERSION_WITH_KEY_ORIGIN) {
meta.nVersion = CKeyMetadata::VERSION_WITH_KEY_ORIGIN;
}
// Write meta to wallet
CPubKey pubkey;
if (GetPubKey(meta_pair.first, pubkey)) {
batch->WriteKeyMetadata(meta, pubkey, true);
}
}
}
}
bool LegacyScriptPubKeyMan::SetupGeneration(bool force)
{
if ((CanGenerateKeys() && !force) || m_storage.IsLocked()) {
return false;
}
SetHDSeed(GenerateNewSeed());
if (!NewKeyPool()) {
return false;
}
return true;
}
bool LegacyScriptPubKeyMan::IsHDEnabled() const
{
return !m_hd_chain.seed_id.IsNull();
}
bool LegacyScriptPubKeyMan::CanGetAddresses(bool internal) const
{
LOCK(cs_KeyStore);
// Check if the keypool has keys
bool keypool_has_keys;
if (internal && m_storage.CanSupportFeature(FEATURE_HD_SPLIT)) {
keypool_has_keys = setInternalKeyPool.size() > 0;
} else {
keypool_has_keys = KeypoolCountExternalKeys() > 0;
}
// If the keypool doesn't have keys, check if we can generate them
if (!keypool_has_keys) {
return CanGenerateKeys();
}
return keypool_has_keys;
}
bool LegacyScriptPubKeyMan::Upgrade(int prev_version, bilingual_str& error)
{
LOCK(cs_KeyStore);
bool hd_upgrade = false;
bool split_upgrade = false;
if (m_storage.CanSupportFeature(FEATURE_HD) && !IsHDEnabled()) {
WalletLogPrintf("Upgrading wallet to HD\n");
m_storage.SetMinVersion(FEATURE_HD);
// generate a new master key
CPubKey masterPubKey = GenerateNewSeed();
SetHDSeed(masterPubKey);
hd_upgrade = true;
}
// Upgrade to HD chain split if necessary
if (m_storage.CanSupportFeature(FEATURE_HD_SPLIT) && CHDChain::VERSION_HD_CHAIN_SPLIT) {
WalletLogPrintf("Upgrading wallet to use HD chain split\n");
m_storage.SetMinVersion(FEATURE_PRE_SPLIT_KEYPOOL);
split_upgrade = FEATURE_HD_SPLIT > prev_version;
}
// Mark all keys currently in the keypool as pre-split
if (split_upgrade) {
MarkPreSplitKeys();
}
// Regenerate the keypool if upgraded to HD
if (hd_upgrade) {
if (!TopUp()) {
error = _("Unable to generate keys");
return false;
}
}
return true;
}
bool LegacyScriptPubKeyMan::HavePrivateKeys() const
{
LOCK(cs_KeyStore);
return !mapKeys.empty() || !mapCryptedKeys.empty();
}
void LegacyScriptPubKeyMan::RewriteDB()
{
LOCK(cs_KeyStore);
setInternalKeyPool.clear();
setExternalKeyPool.clear();
m_pool_key_to_index.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// that requires a new key.
}
static int64_t GetOldestKeyTimeInPool(const std::set<int64_t>& setKeyPool, WalletBatch& batch) {
if (setKeyPool.empty()) {
return GetTime();
}
CKeyPool keypool;
int64_t nIndex = *(setKeyPool.begin());
if (!batch.ReadPool(nIndex, keypool)) {
throw std::runtime_error(std::string(__func__) + ": read oldest key in keypool failed");
}
assert(keypool.vchPubKey.IsValid());
return keypool.nTime;
}
int64_t LegacyScriptPubKeyMan::GetOldestKeyPoolTime() const
{
LOCK(cs_KeyStore);
WalletBatch batch(m_storage.GetDatabase());
// load oldest key from keypool, get time and return
int64_t oldestKey = GetOldestKeyTimeInPool(setExternalKeyPool, batch);
if (IsHDEnabled() && m_storage.CanSupportFeature(FEATURE_HD_SPLIT)) {
oldestKey = std::max(GetOldestKeyTimeInPool(setInternalKeyPool, batch), oldestKey);
if (!set_pre_split_keypool.empty()) {
oldestKey = std::max(GetOldestKeyTimeInPool(set_pre_split_keypool, batch), oldestKey);
}
}
return oldestKey;
}
size_t LegacyScriptPubKeyMan::KeypoolCountExternalKeys() const
{
LOCK(cs_KeyStore);
return setExternalKeyPool.size() + set_pre_split_keypool.size();
}
unsigned int LegacyScriptPubKeyMan::GetKeyPoolSize() const
{
LOCK(cs_KeyStore);
return setInternalKeyPool.size() + setExternalKeyPool.size() + set_pre_split_keypool.size();
}
int64_t LegacyScriptPubKeyMan::GetTimeFirstKey() const
{
LOCK(cs_KeyStore);
return nTimeFirstKey;
}
std::unique_ptr<SigningProvider> LegacyScriptPubKeyMan::GetSolvingProvider(const CScript& script) const
{
return MakeUnique<LegacySigningProvider>(*this);
}
bool LegacyScriptPubKeyMan::CanProvide(const CScript& script, SignatureData& sigdata)
{
IsMineResult ismine = IsMineInner(*this, script, IsMineSigVersion::TOP, /* recurse_scripthash= */ false);
if (ismine == IsMineResult::SPENDABLE || ismine == IsMineResult::WATCH_ONLY) {
// If ismine, it means we recognize keys or script ids in the script, or
// are watching the script itself, and we can at least provide metadata
// or solving information, even if not able to sign fully.
return true;
} else {
// If, given the stuff in sigdata, we could make a valid sigature, then we can provide for this script
ProduceSignature(*this, DUMMY_SIGNATURE_CREATOR, script, sigdata);
if (!sigdata.signatures.empty()) {
// If we could make signatures, make sure we have a private key to actually make a signature
bool has_privkeys = false;
for (const auto& key_sig_pair : sigdata.signatures) {
has_privkeys |= HaveKey(key_sig_pair.first);
}
return has_privkeys;
}
return false;
}
}
bool LegacyScriptPubKeyMan::SignTransaction(CMutableTransaction& tx, const std::map<COutPoint, Coin>& coins, int sighash, std::map<int, std::string>& input_errors) const
{
return ::SignTransaction(tx, this, coins, sighash, input_errors);
}
SigningResult LegacyScriptPubKeyMan::SignMessage(const std::string& message, const PKHash& pkhash, std::string& str_sig) const
{
CKey key;
if (!GetKey(ToKeyID(pkhash), key)) {
return SigningResult::PRIVATE_KEY_NOT_AVAILABLE;
}
if (MessageSign(key, message, str_sig)) {
return SigningResult::OK;
}
return SigningResult::SIGNING_FAILED;
}
TransactionError LegacyScriptPubKeyMan::FillPSBT(PartiallySignedTransaction& psbtx, int sighash_type, bool sign, bool bip32derivs, int* n_signed) const
{
if (n_signed) {
*n_signed = 0;
}
for (unsigned int i = 0; i < psbtx.tx->vin.size(); ++i) {
const CTxIn& txin = psbtx.tx->vin[i];
PSBTInput& input = psbtx.inputs.at(i);
if (PSBTInputSigned(input)) {
continue;
}
// Get the Sighash type
if (sign && input.sighash_type > 0 && input.sighash_type != sighash_type) {
return TransactionError::SIGHASH_MISMATCH;
}
// Check non_witness_utxo has specified prevout
if (input.non_witness_utxo) {
if (txin.prevout.n >= input.non_witness_utxo->vout.size()) {
return TransactionError::MISSING_INPUTS;
}
} else if (input.witness_utxo.IsNull()) {
// There's no UTXO so we can just skip this now
continue;
}
SignatureData sigdata;
input.FillSignatureData(sigdata);
SignPSBTInput(HidingSigningProvider(this, !sign, !bip32derivs), psbtx, i, sighash_type);
bool signed_one = PSBTInputSigned(input);
if (n_signed && (signed_one || !sign)) {
// If sign is false, we assume that we _could_ sign if we get here. This
// will never have false negatives; it is hard to tell under what i
// circumstances it could have false positives.
(*n_signed)++;
}
}
// Fill in the bip32 keypaths and redeemscripts for the outputs so that hardware wallets can identify change
for (unsigned int i = 0; i < psbtx.tx->vout.size(); ++i) {
UpdatePSBTOutput(HidingSigningProvider(this, true, !bip32derivs), psbtx, i);
}
return TransactionError::OK;
}
std::unique_ptr<CKeyMetadata> LegacyScriptPubKeyMan::GetMetadata(const CTxDestination& dest) const
{
LOCK(cs_KeyStore);
CKeyID key_id = GetKeyForDestination(*this, dest);
if (!key_id.IsNull()) {
auto it = mapKeyMetadata.find(key_id);
if (it != mapKeyMetadata.end()) {
return MakeUnique<CKeyMetadata>(it->second);
}
}
CScript scriptPubKey = GetScriptForDestination(dest);
auto it = m_script_metadata.find(CScriptID(scriptPubKey));
if (it != m_script_metadata.end()) {
return MakeUnique<CKeyMetadata>(it->second);
}
return nullptr;
}
uint256 LegacyScriptPubKeyMan::GetID() const
{
return UINT256_ONE();
}
/**
* Update wallet first key creation time. This should be called whenever keys
* are added to the wallet, with the oldest key creation time.
*/
void LegacyScriptPubKeyMan::UpdateTimeFirstKey(int64_t nCreateTime)
{
AssertLockHeld(cs_KeyStore);
if (nCreateTime <= 1) {
// Cannot determine birthday information, so set the wallet birthday to
// the beginning of time.
nTimeFirstKey = 1;
} else if (!nTimeFirstKey || nCreateTime < nTimeFirstKey) {
nTimeFirstKey = nCreateTime;
}
}
bool LegacyScriptPubKeyMan::LoadKey(const CKey& key, const CPubKey &pubkey)
{
return AddKeyPubKeyInner(key, pubkey);
}
bool LegacyScriptPubKeyMan::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey)
{
LOCK(cs_KeyStore);
WalletBatch batch(m_storage.GetDatabase());
return LegacyScriptPubKeyMan::AddKeyPubKeyWithDB(batch, secret, pubkey);
}
bool LegacyScriptPubKeyMan::AddKeyPubKeyWithDB(WalletBatch& batch, const CKey& secret, const CPubKey& pubkey)
{
AssertLockHeld(cs_KeyStore);
// Make sure we aren't adding private keys to private key disabled wallets
assert(!m_storage.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS));
// FillableSigningProvider has no concept of wallet databases, but calls AddCryptedKey
// which is overridden below. To avoid flushes, the database handle is
// tunneled through to it.
bool needsDB = !encrypted_batch;
if (needsDB) {
encrypted_batch = &batch;
}
if (!AddKeyPubKeyInner(secret, pubkey)) {
if (needsDB) encrypted_batch = nullptr;
return false;
}
if (needsDB) encrypted_batch = nullptr;
// check if we need to remove from watch-only
CScript script;
script = GetScriptForDestination(PKHash(pubkey));
if (HaveWatchOnly(script)) {
RemoveWatchOnly(script);
}
script = GetScriptForRawPubKey(pubkey);
if (HaveWatchOnly(script)) {
RemoveWatchOnly(script);
}
if (!m_storage.HasEncryptionKeys()) {
return batch.WriteKey(pubkey,
secret.GetPrivKey(),
mapKeyMetadata[pubkey.GetID()]);
}
m_storage.UnsetBlankWalletFlag(batch);
return true;
}
bool LegacyScriptPubKeyMan::LoadCScript(const CScript& redeemScript)
{
/* A sanity check was added in pull #3843 to avoid adding redeemScripts
* that never can be redeemed. However, old wallets may still contain
* these. Do not add them to the wallet and warn. */
if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
std::string strAddr = EncodeDestination(ScriptHash(redeemScript));
WalletLogPrintf("%s: Warning: This wallet contains a redeemScript of size %i which exceeds maximum size %i thus can never be redeemed. Do not use address %s.\n", __func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr);
return true;
}
return FillableSigningProvider::AddCScript(redeemScript);
}
void LegacyScriptPubKeyMan::LoadKeyMetadata(const CKeyID& keyID, const CKeyMetadata& meta)
{
LOCK(cs_KeyStore);
UpdateTimeFirstKey(meta.nCreateTime);
mapKeyMetadata[keyID] = meta;
}
void LegacyScriptPubKeyMan::LoadScriptMetadata(const CScriptID& script_id, const CKeyMetadata& meta)
{
LOCK(cs_KeyStore);
UpdateTimeFirstKey(meta.nCreateTime);
m_script_metadata[script_id] = meta;
}
bool LegacyScriptPubKeyMan::AddKeyPubKeyInner(const CKey& key, const CPubKey &pubkey)
{
LOCK(cs_KeyStore);
if (!m_storage.HasEncryptionKeys()) {
return FillableSigningProvider::AddKeyPubKey(key, pubkey);
}
if (m_storage.IsLocked()) {
return false;
}
std::vector<unsigned char> vchCryptedSecret;
CKeyingMaterial vchSecret(key.begin(), key.end());
if (!EncryptSecret(m_storage.GetEncryptionKey(), vchSecret, pubkey.GetHash(), vchCryptedSecret)) {
return false;
}
if (!AddCryptedKey(pubkey, vchCryptedSecret)) {
return false;
}
return true;
}
bool LegacyScriptPubKeyMan::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret, bool checksum_valid)
{
// Set fDecryptionThoroughlyChecked to false when the checksum is invalid
if (!checksum_valid) {
fDecryptionThoroughlyChecked = false;
}
return AddCryptedKeyInner(vchPubKey, vchCryptedSecret);
}
bool LegacyScriptPubKeyMan::AddCryptedKeyInner(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
LOCK(cs_KeyStore);
assert(mapKeys.empty());
mapCryptedKeys[vchPubKey.GetID()] = make_pair(vchPubKey, vchCryptedSecret);
ImplicitlyLearnRelatedKeyScripts(vchPubKey);
return true;
}
bool LegacyScriptPubKeyMan::AddCryptedKey(const CPubKey &vchPubKey,
const std::vector<unsigned char> &vchCryptedSecret)
{
if (!AddCryptedKeyInner(vchPubKey, vchCryptedSecret))
return false;
{
LOCK(cs_KeyStore);
if (encrypted_batch)
return encrypted_batch->WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
else
return WalletBatch(m_storage.GetDatabase()).WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
}
}
bool LegacyScriptPubKeyMan::HaveWatchOnly(const CScript &dest) const
{
LOCK(cs_KeyStore);
return setWatchOnly.count(dest) > 0;
}
bool LegacyScriptPubKeyMan::HaveWatchOnly() const
{
LOCK(cs_KeyStore);
return (!setWatchOnly.empty());
}
static bool ExtractPubKey(const CScript &dest, CPubKey& pubKeyOut)
{
std::vector<std::vector<unsigned char>> solutions;
return Solver(dest, solutions) == TxoutType::PUBKEY &&
(pubKeyOut = CPubKey(solutions[0])).IsFullyValid();
}
bool LegacyScriptPubKeyMan::RemoveWatchOnly(const CScript &dest)
{
{
LOCK(cs_KeyStore);
setWatchOnly.erase(dest);
CPubKey pubKey;
if (ExtractPubKey(dest, pubKey)) {
mapWatchKeys.erase(pubKey.GetID());
}
// Related CScripts are not removed; having superfluous scripts around is
// harmless (see comment in ImplicitlyLearnRelatedKeyScripts).
}
if (!HaveWatchOnly())
NotifyWatchonlyChanged(false);
if (!WalletBatch(m_storage.GetDatabase()).EraseWatchOnly(dest))
return false;
return true;
}
bool LegacyScriptPubKeyMan::LoadWatchOnly(const CScript &dest)
{
return AddWatchOnlyInMem(dest);
}
bool LegacyScriptPubKeyMan::AddWatchOnlyInMem(const CScript &dest)
{
LOCK(cs_KeyStore);
setWatchOnly.insert(dest);
CPubKey pubKey;
if (ExtractPubKey(dest, pubKey)) {
mapWatchKeys[pubKey.GetID()] = pubKey;
ImplicitlyLearnRelatedKeyScripts(pubKey);
}
return true;
}
bool LegacyScriptPubKeyMan::AddWatchOnlyWithDB(WalletBatch &batch, const CScript& dest)
{
if (!AddWatchOnlyInMem(dest))
return false;
const CKeyMetadata& meta = m_script_metadata[CScriptID(dest)];
UpdateTimeFirstKey(meta.nCreateTime);
NotifyWatchonlyChanged(true);
if (batch.WriteWatchOnly(dest, meta)) {
m_storage.UnsetBlankWalletFlag(batch);
return true;
}
return false;
}
bool LegacyScriptPubKeyMan::AddWatchOnlyWithDB(WalletBatch &batch, const CScript& dest, int64_t create_time)
{
m_script_metadata[CScriptID(dest)].nCreateTime = create_time;
return AddWatchOnlyWithDB(batch, dest);
}
bool LegacyScriptPubKeyMan::AddWatchOnly(const CScript& dest)
{
WalletBatch batch(m_storage.GetDatabase());
return AddWatchOnlyWithDB(batch, dest);
}
bool LegacyScriptPubKeyMan::AddWatchOnly(const CScript& dest, int64_t nCreateTime)
{
m_script_metadata[CScriptID(dest)].nCreateTime = nCreateTime;
return AddWatchOnly(dest);
}
void LegacyScriptPubKeyMan::LoadHDChain(const CHDChain& chain)
{
LOCK(cs_KeyStore);
m_hd_chain = chain;
}
void LegacyScriptPubKeyMan::AddHDChain(const CHDChain& chain)
{
LOCK(cs_KeyStore);
// Store the new chain
if (!WalletBatch(m_storage.GetDatabase()).WriteHDChain(chain)) {
throw std::runtime_error(std::string(__func__) + ": writing chain failed");
}
// When there's an old chain, add it as an inactive chain as we are now rotating hd chains
if (!m_hd_chain.seed_id.IsNull()) {
AddInactiveHDChain(m_hd_chain);
}
m_hd_chain = chain;
}
void LegacyScriptPubKeyMan::AddInactiveHDChain(const CHDChain& chain)
{
LOCK(cs_KeyStore);
assert(!chain.seed_id.IsNull());
m_inactive_hd_chains[chain.seed_id] = chain;
}
bool LegacyScriptPubKeyMan::HaveKey(const CKeyID &address) const
{
LOCK(cs_KeyStore);
if (!m_storage.HasEncryptionKeys()) {
return FillableSigningProvider::HaveKey(address);
}
return mapCryptedKeys.count(address) > 0;
}
bool LegacyScriptPubKeyMan::GetKey(const CKeyID &address, CKey& keyOut) const
{
LOCK(cs_KeyStore);
if (!m_storage.HasEncryptionKeys()) {
return FillableSigningProvider::GetKey(address, keyOut);
}
CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
if (mi != mapCryptedKeys.end())
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
return DecryptKey(m_storage.GetEncryptionKey(), vchCryptedSecret, vchPubKey, keyOut);
}
return false;
}
bool LegacyScriptPubKeyMan::GetKeyOrigin(const CKeyID& keyID, KeyOriginInfo& info) const
{
CKeyMetadata meta;
{
LOCK(cs_KeyStore);
auto it = mapKeyMetadata.find(keyID);
if (it != mapKeyMetadata.end()) {
meta = it->second;
}
}
if (meta.has_key_origin) {
std::copy(meta.key_origin.fingerprint, meta.key_origin.fingerprint + 4, info.fingerprint);
info.path = meta.key_origin.path;
} else { // Single pubkeys get the master fingerprint of themselves
std::copy(keyID.begin(), keyID.begin() + 4, info.fingerprint);
}
return true;
}
bool LegacyScriptPubKeyMan::GetWatchPubKey(const CKeyID &address, CPubKey &pubkey_out) const
{
LOCK(cs_KeyStore);
WatchKeyMap::const_iterator it = mapWatchKeys.find(address);
if (it != mapWatchKeys.end()) {
pubkey_out = it->second;
return true;
}
return false;
}
bool LegacyScriptPubKeyMan::GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const
{
LOCK(cs_KeyStore);
if (!m_storage.HasEncryptionKeys()) {
if (!FillableSigningProvider::GetPubKey(address, vchPubKeyOut)) {
return GetWatchPubKey(address, vchPubKeyOut);
}
return true;
}
CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
if (mi != mapCryptedKeys.end())
{
vchPubKeyOut = (*mi).second.first;
return true;
}
// Check for watch-only pubkeys
return GetWatchPubKey(address, vchPubKeyOut);
}
CPubKey LegacyScriptPubKeyMan::GenerateNewKey(WalletBatch &batch, CHDChain& hd_chain, bool internal)
{
assert(!m_storage.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS));
assert(!m_storage.IsWalletFlagSet(WALLET_FLAG_BLANK_WALLET));
AssertLockHeld(cs_KeyStore);
bool fCompressed = m_storage.CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets
CKey secret;
// Create new metadata
int64_t nCreationTime = GetTime();
CKeyMetadata metadata(nCreationTime);
// use HD key derivation if HD was enabled during wallet creation and a seed is present
if (IsHDEnabled()) {
DeriveNewChildKey(batch, metadata, secret, hd_chain, (m_storage.CanSupportFeature(FEATURE_HD_SPLIT) ? internal : false));
} else {
secret.MakeNewKey(fCompressed);
}
// Compressed public keys were introduced in version 0.6.0
if (fCompressed) {
m_storage.SetMinVersion(FEATURE_COMPRPUBKEY);
}
CPubKey pubkey = secret.GetPubKey();
assert(secret.VerifyPubKey(pubkey));
mapKeyMetadata[pubkey.GetID()] = metadata;
UpdateTimeFirstKey(nCreationTime);
if (!AddKeyPubKeyWithDB(batch, secret, pubkey)) {
throw std::runtime_error(std::string(__func__) + ": AddKey failed");
}
return pubkey;
}
void LegacyScriptPubKeyMan::DeriveNewChildKey(WalletBatch &batch, CKeyMetadata& metadata, CKey& secret, CHDChain& hd_chain, bool internal)
{
// for now we use a fixed keypath scheme of m/0'/0'/k
CKey seed; //seed (256bit)
CExtKey masterKey; //hd master key
CExtKey accountKey; //key at m/0'
CExtKey chainChildKey; //key at m/0'/0' (external) or m/0'/1' (internal)
CExtKey childKey; //key at m/0'/0'/<n>'
// try to get the seed
if (!GetKey(hd_chain.seed_id, seed))
throw std::runtime_error(std::string(__func__) + ": seed not found");
masterKey.SetSeed(seed.begin(), seed.size());
// derive m/0'
// use hardened derivation (child keys >= 0x80000000 are hardened after bip32)
masterKey.Derive(accountKey, BIP32_HARDENED_KEY_LIMIT);
// derive m/0'/0' (external chain) OR m/0'/1' (internal chain)
assert(internal ? m_storage.CanSupportFeature(FEATURE_HD_SPLIT) : true);
accountKey.Derive(chainChildKey, BIP32_HARDENED_KEY_LIMIT+(internal ? 1 : 0));
// derive child key at next index, skip keys already known to the wallet
do {
// always derive hardened keys
// childIndex | BIP32_HARDENED_KEY_LIMIT = derive childIndex in hardened child-index-range
// example: 1 | BIP32_HARDENED_KEY_LIMIT == 0x80000001 == 2147483649
if (internal) {
chainChildKey.Derive(childKey, hd_chain.nInternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
metadata.hdKeypath = "m/0'/1'/" + ToString(hd_chain.nInternalChainCounter) + "'";
metadata.key_origin.path.push_back(0 | BIP32_HARDENED_KEY_LIMIT);
metadata.key_origin.path.push_back(1 | BIP32_HARDENED_KEY_LIMIT);
metadata.key_origin.path.push_back(hd_chain.nInternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
hd_chain.nInternalChainCounter++;
}
else {
chainChildKey.Derive(childKey, hd_chain.nExternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
metadata.hdKeypath = "m/0'/0'/" + ToString(hd_chain.nExternalChainCounter) + "'";
metadata.key_origin.path.push_back(0 | BIP32_HARDENED_KEY_LIMIT);
metadata.key_origin.path.push_back(0 | BIP32_HARDENED_KEY_LIMIT);
metadata.key_origin.path.push_back(hd_chain.nExternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
hd_chain.nExternalChainCounter++;
}
} while (HaveKey(childKey.key.GetPubKey().GetID()));
secret = childKey.key;
metadata.hd_seed_id = hd_chain.seed_id;
CKeyID master_id = masterKey.key.GetPubKey().GetID();
std::copy(master_id.begin(), master_id.begin() + 4, metadata.key_origin.fingerprint);
metadata.has_key_origin = true;
// update the chain model in the database
if (hd_chain.seed_id == m_hd_chain.seed_id && !batch.WriteHDChain(hd_chain))
throw std::runtime_error(std::string(__func__) + ": writing HD chain model failed");
}
void LegacyScriptPubKeyMan::LoadKeyPool(int64_t nIndex, const CKeyPool &keypool)
{
LOCK(cs_KeyStore);
if (keypool.m_pre_split) {
set_pre_split_keypool.insert(nIndex);
} else if (keypool.fInternal) {
setInternalKeyPool.insert(nIndex);
} else {
setExternalKeyPool.insert(nIndex);
}
m_max_keypool_index = std::max(m_max_keypool_index, nIndex);
m_pool_key_to_index[keypool.vchPubKey.GetID()] = nIndex;
// If no metadata exists yet, create a default with the pool key's
// creation time. Note that this may be overwritten by actually
// stored metadata for that key later, which is fine.
CKeyID keyid = keypool.vchPubKey.GetID();
if (mapKeyMetadata.count(keyid) == 0)
mapKeyMetadata[keyid] = CKeyMetadata(keypool.nTime);
}
bool LegacyScriptPubKeyMan::CanGenerateKeys() const
{
// A wallet can generate keys if it has an HD seed (IsHDEnabled) or it is a non-HD wallet (pre FEATURE_HD)
LOCK(cs_KeyStore);
return IsHDEnabled() || !m_storage.CanSupportFeature(FEATURE_HD);
}
CPubKey LegacyScriptPubKeyMan::GenerateNewSeed()
{
assert(!m_storage.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS));
CKey key;
key.MakeNewKey(true);
return DeriveNewSeed(key);
}
CPubKey LegacyScriptPubKeyMan::DeriveNewSeed(const CKey& key)
{
int64_t nCreationTime = GetTime();
CKeyMetadata metadata(nCreationTime);
// calculate the seed
CPubKey seed = key.GetPubKey();
assert(key.VerifyPubKey(seed));
// set the hd keypath to "s" -> Seed, refers the seed to itself
metadata.hdKeypath = "s";
metadata.has_key_origin = false;
metadata.hd_seed_id = seed.GetID();
{
LOCK(cs_KeyStore);
// mem store the metadata
mapKeyMetadata[seed.GetID()] = metadata;
// write the key&metadata to the database
if (!AddKeyPubKey(key, seed))
throw std::runtime_error(std::string(__func__) + ": AddKeyPubKey failed");
}
return seed;
}
void LegacyScriptPubKeyMan::SetHDSeed(const CPubKey& seed)
{
LOCK(cs_KeyStore);
// store the keyid (hash160) together with
// the child index counter in the database
// as a hdchain object
CHDChain newHdChain;
newHdChain.nVersion = m_storage.CanSupportFeature(FEATURE_HD_SPLIT) ? CHDChain::VERSION_HD_CHAIN_SPLIT : CHDChain::VERSION_HD_BASE;
newHdChain.seed_id = seed.GetID();
AddHDChain(newHdChain);
NotifyCanGetAddressesChanged();
WalletBatch batch(m_storage.GetDatabase());
m_storage.UnsetBlankWalletFlag(batch);
}
/**
* Mark old keypool keys as used,
* and generate all new keys
*/
bool LegacyScriptPubKeyMan::NewKeyPool()
{
if (m_storage.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS)) {
return false;
}
{
LOCK(cs_KeyStore);
WalletBatch batch(m_storage.GetDatabase());
for (const int64_t nIndex : setInternalKeyPool) {
batch.ErasePool(nIndex);
}
setInternalKeyPool.clear();
for (const int64_t nIndex : setExternalKeyPool) {
batch.ErasePool(nIndex);
}
setExternalKeyPool.clear();
for (const int64_t nIndex : set_pre_split_keypool) {
batch.ErasePool(nIndex);
}
set_pre_split_keypool.clear();
m_pool_key_to_index.clear();
if (!TopUp()) {
return false;
}
WalletLogPrintf("LegacyScriptPubKeyMan::NewKeyPool rewrote keypool\n");
}
return true;
}
bool LegacyScriptPubKeyMan::TopUp(unsigned int kpSize)
{
if (!CanGenerateKeys()) {
return false;
}
{
LOCK(cs_KeyStore);
if (m_storage.IsLocked()) return false;
// Top up key pool
unsigned int nTargetSize;
if (kpSize > 0)
nTargetSize = kpSize;
else
nTargetSize = std::max(gArgs.GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 0);
// count amount of available keys (internal, external)
// make sure the keypool of external and internal keys fits the user selected target (-keypool)
int64_t missingExternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - (int64_t)setExternalKeyPool.size(), (int64_t) 0);
int64_t missingInternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - (int64_t)setInternalKeyPool.size(), (int64_t) 0);
if (!IsHDEnabled() || !m_storage.CanSupportFeature(FEATURE_HD_SPLIT))
{
// don't create extra internal keys
missingInternal = 0;
}
bool internal = false;
WalletBatch batch(m_storage.GetDatabase());
for (int64_t i = missingInternal + missingExternal; i--;)
{
if (i < missingInternal) {
internal = true;
}
CPubKey pubkey(GenerateNewKey(batch, m_hd_chain, internal));
AddKeypoolPubkeyWithDB(pubkey, internal, batch);
}
if (missingInternal + missingExternal > 0) {
WalletLogPrintf("keypool added %d keys (%d internal), size=%u (%u internal)\n", missingInternal + missingExternal, missingInternal, setInternalKeyPool.size() + setExternalKeyPool.size() + set_pre_split_keypool.size(), setInternalKeyPool.size());
}
}
NotifyCanGetAddressesChanged();
return true;
}
void LegacyScriptPubKeyMan::AddKeypoolPubkeyWithDB(const CPubKey& pubkey, const bool internal, WalletBatch& batch)
{
LOCK(cs_KeyStore);
assert(m_max_keypool_index < std::numeric_limits<int64_t>::max()); // How in the hell did you use so many keys?
int64_t index = ++m_max_keypool_index;
if (!batch.WritePool(index, CKeyPool(pubkey, internal))) {
throw std::runtime_error(std::string(__func__) + ": writing imported pubkey failed");
}
if (internal) {
setInternalKeyPool.insert(index);
} else {
setExternalKeyPool.insert(index);
}
m_pool_key_to_index[pubkey.GetID()] = index;
}
void LegacyScriptPubKeyMan::KeepDestination(int64_t nIndex, const OutputType& type)
{
// Remove from key pool
WalletBatch batch(m_storage.GetDatabase());
batch.ErasePool(nIndex);
CPubKey pubkey;
bool have_pk = GetPubKey(m_index_to_reserved_key.at(nIndex), pubkey);
assert(have_pk);
LearnRelatedScripts(pubkey, type);
m_index_to_reserved_key.erase(nIndex);
WalletLogPrintf("keypool keep %d\n", nIndex);
}
void LegacyScriptPubKeyMan::ReturnDestination(int64_t nIndex, bool fInternal, const CTxDestination&)
{
// Return to key pool
{
LOCK(cs_KeyStore);
if (fInternal) {
setInternalKeyPool.insert(nIndex);
} else if (!set_pre_split_keypool.empty()) {
set_pre_split_keypool.insert(nIndex);
} else {
setExternalKeyPool.insert(nIndex);
}
CKeyID& pubkey_id = m_index_to_reserved_key.at(nIndex);
m_pool_key_to_index[pubkey_id] = nIndex;
m_index_to_reserved_key.erase(nIndex);
NotifyCanGetAddressesChanged();
}
WalletLogPrintf("keypool return %d\n", nIndex);
}
bool LegacyScriptPubKeyMan::GetKeyFromPool(CPubKey& result, const OutputType type, bool internal)
{
if (!CanGetAddresses(internal)) {
return false;
}
CKeyPool keypool;
{
LOCK(cs_KeyStore);
int64_t nIndex;
if (!ReserveKeyFromKeyPool(nIndex, keypool, internal) && !m_storage.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS)) {
if (m_storage.IsLocked()) return false;
WalletBatch batch(m_storage.GetDatabase());
result = GenerateNewKey(batch, m_hd_chain, internal);
return true;
}
KeepDestination(nIndex, type);
result = keypool.vchPubKey;
}
return true;
}
bool LegacyScriptPubKeyMan::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool, bool fRequestedInternal)
{
nIndex = -1;
keypool.vchPubKey = CPubKey();
{
LOCK(cs_KeyStore);
bool fReturningInternal = fRequestedInternal;
fReturningInternal &= (IsHDEnabled() && m_storage.CanSupportFeature(FEATURE_HD_SPLIT)) || m_storage.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS);
bool use_split_keypool = set_pre_split_keypool.empty();
std::set<int64_t>& setKeyPool = use_split_keypool ? (fReturningInternal ? setInternalKeyPool : setExternalKeyPool) : set_pre_split_keypool;
// Get the oldest key
if (setKeyPool.empty()) {
return false;
}
WalletBatch batch(m_storage.GetDatabase());
auto it = setKeyPool.begin();
nIndex = *it;
setKeyPool.erase(it);
if (!batch.ReadPool(nIndex, keypool)) {
throw std::runtime_error(std::string(__func__) + ": read failed");
}
CPubKey pk;
if (!GetPubKey(keypool.vchPubKey.GetID(), pk)) {
throw std::runtime_error(std::string(__func__) + ": unknown key in key pool");
}
// If the key was pre-split keypool, we don't care about what type it is
if (use_split_keypool && keypool.fInternal != fReturningInternal) {
throw std::runtime_error(std::string(__func__) + ": keypool entry misclassified");
}
if (!keypool.vchPubKey.IsValid()) {
throw std::runtime_error(std::string(__func__) + ": keypool entry invalid");
}
assert(m_index_to_reserved_key.count(nIndex) == 0);
m_index_to_reserved_key[nIndex] = keypool.vchPubKey.GetID();
m_pool_key_to_index.erase(keypool.vchPubKey.GetID());
WalletLogPrintf("keypool reserve %d\n", nIndex);
}
NotifyCanGetAddressesChanged();
return true;
}
void LegacyScriptPubKeyMan::LearnRelatedScripts(const CPubKey& key, OutputType type)
{
if (key.IsCompressed() && (type == OutputType::P2SH_SEGWIT || type == OutputType::BECH32)) {
CTxDestination witdest = WitnessV0KeyHash(key.GetID());
CScript witprog = GetScriptForDestination(witdest);
// Make sure the resulting program is solvable.
assert(IsSolvable(*this, witprog));
AddCScript(witprog);
}
}
void LegacyScriptPubKeyMan::LearnAllRelatedScripts(const CPubKey& key)
{
// OutputType::P2SH_SEGWIT always adds all necessary scripts for all types.
LearnRelatedScripts(key, OutputType::P2SH_SEGWIT);
}
void LegacyScriptPubKeyMan::MarkReserveKeysAsUsed(int64_t keypool_id)
{
AssertLockHeld(cs_KeyStore);
bool internal = setInternalKeyPool.count(keypool_id);
if (!internal) assert(setExternalKeyPool.count(keypool_id) || set_pre_split_keypool.count(keypool_id));
std::set<int64_t> *setKeyPool = internal ? &setInternalKeyPool : (set_pre_split_keypool.empty() ? &setExternalKeyPool : &set_pre_split_keypool);
auto it = setKeyPool->begin();
WalletBatch batch(m_storage.GetDatabase());
while (it != std::end(*setKeyPool)) {
const int64_t& index = *(it);
if (index > keypool_id) break; // set*KeyPool is ordered
CKeyPool keypool;
if (batch.ReadPool(index, keypool)) { //TODO: This should be unnecessary
m_pool_key_to_index.erase(keypool.vchPubKey.GetID());
}
LearnAllRelatedScripts(keypool.vchPubKey);
batch.ErasePool(index);
WalletLogPrintf("keypool index %d removed\n", index);
it = setKeyPool->erase(it);
}
}
std::vector<CKeyID> GetAffectedKeys(const CScript& spk, const SigningProvider& provider)
{
std::vector<CScript> dummy;
FlatSigningProvider out;
InferDescriptor(spk, provider)->Expand(0, DUMMY_SIGNING_PROVIDER, dummy, out);
std::vector<CKeyID> ret;
for (const auto& entry : out.pubkeys) {
ret.push_back(entry.first);
}
return ret;
}
void LegacyScriptPubKeyMan::MarkPreSplitKeys()
{
WalletBatch batch(m_storage.GetDatabase());
for (auto it = setExternalKeyPool.begin(); it != setExternalKeyPool.end();) {
int64_t index = *it;
CKeyPool keypool;
if (!batch.ReadPool(index, keypool)) {
throw std::runtime_error(std::string(__func__) + ": read keypool entry failed");
}
keypool.m_pre_split = true;
if (!batch.WritePool(index, keypool)) {
throw std::runtime_error(std::string(__func__) + ": writing modified keypool entry failed");
}
set_pre_split_keypool.insert(index);
it = setExternalKeyPool.erase(it);
}
}
bool LegacyScriptPubKeyMan::AddCScript(const CScript& redeemScript)
{
WalletBatch batch(m_storage.GetDatabase());
return AddCScriptWithDB(batch, redeemScript);
}
bool LegacyScriptPubKeyMan::AddCScriptWithDB(WalletBatch& batch, const CScript& redeemScript)
{
if (!FillableSigningProvider::AddCScript(redeemScript))
return false;
if (batch.WriteCScript(Hash160(redeemScript), redeemScript)) {
m_storage.UnsetBlankWalletFlag(batch);
return true;
}
return false;
}
bool LegacyScriptPubKeyMan::AddKeyOriginWithDB(WalletBatch& batch, const CPubKey& pubkey, const KeyOriginInfo& info)
{
LOCK(cs_KeyStore);
std::copy(info.fingerprint, info.fingerprint + 4, mapKeyMetadata[pubkey.GetID()].key_origin.fingerprint);
mapKeyMetadata[pubkey.GetID()].key_origin.path = info.path;
mapKeyMetadata[pubkey.GetID()].has_key_origin = true;
mapKeyMetadata[pubkey.GetID()].hdKeypath = WriteHDKeypath(info.path);
return batch.WriteKeyMetadata(mapKeyMetadata[pubkey.GetID()], pubkey, true);
}
bool LegacyScriptPubKeyMan::ImportScripts(const std::set<CScript> scripts, int64_t timestamp)
{
WalletBatch batch(m_storage.GetDatabase());
for (const auto& entry : scripts) {
CScriptID id(entry);
if (HaveCScript(id)) {
WalletLogPrintf("Already have script %s, skipping\n", HexStr(entry));
continue;
}
if (!AddCScriptWithDB(batch, entry)) {
return false;
}
if (timestamp > 0) {
m_script_metadata[CScriptID(entry)].nCreateTime = timestamp;
}
}
if (timestamp > 0) {
UpdateTimeFirstKey(timestamp);
}
return true;
}
bool LegacyScriptPubKeyMan::ImportPrivKeys(const std::map<CKeyID, CKey>& privkey_map, const int64_t timestamp)
{
WalletBatch batch(m_storage.GetDatabase());
for (const auto& entry : privkey_map) {
const CKey& key = entry.second;
CPubKey pubkey = key.GetPubKey();
const CKeyID& id = entry.first;
assert(key.VerifyPubKey(pubkey));
// Skip if we already have the key
if (HaveKey(id)) {
WalletLogPrintf("Already have key with pubkey %s, skipping\n", HexStr(pubkey));
continue;
}
mapKeyMetadata[id].nCreateTime = timestamp;
// If the private key is not present in the wallet, insert it.
if (!AddKeyPubKeyWithDB(batch, key, pubkey)) {
return false;
}
UpdateTimeFirstKey(timestamp);
}
return true;
}
bool LegacyScriptPubKeyMan::ImportPubKeys(const std::vector<CKeyID>& ordered_pubkeys, const std::map<CKeyID, CPubKey>& pubkey_map, const std::map<CKeyID, std::pair<CPubKey, KeyOriginInfo>>& key_origins, const bool add_keypool, const bool internal, const int64_t timestamp)
{
WalletBatch batch(m_storage.GetDatabase());
for (const auto& entry : key_origins) {
AddKeyOriginWithDB(batch, entry.second.first, entry.second.second);
}
for (const CKeyID& id : ordered_pubkeys) {
auto entry = pubkey_map.find(id);
if (entry == pubkey_map.end()) {
continue;
}
const CPubKey& pubkey = entry->second;
CPubKey temp;
if (GetPubKey(id, temp)) {
// Already have pubkey, skipping
WalletLogPrintf("Already have pubkey %s, skipping\n", HexStr(temp));
continue;
}
if (!AddWatchOnlyWithDB(batch, GetScriptForRawPubKey(pubkey), timestamp)) {
return false;
}
mapKeyMetadata[id].nCreateTime = timestamp;
// Add to keypool only works with pubkeys
if (add_keypool) {
AddKeypoolPubkeyWithDB(pubkey, internal, batch);
NotifyCanGetAddressesChanged();
}
}
return true;
}
bool LegacyScriptPubKeyMan::ImportScriptPubKeys(const std::set<CScript>& script_pub_keys, const bool have_solving_data, const int64_t timestamp)
{
WalletBatch batch(m_storage.GetDatabase());
for (const CScript& script : script_pub_keys) {
if (!have_solving_data || !IsMine(script)) { // Always call AddWatchOnly for non-solvable watch-only, so that watch timestamp gets updated
if (!AddWatchOnlyWithDB(batch, script, timestamp)) {
return false;
}
}
}
return true;
}
std::set<CKeyID> LegacyScriptPubKeyMan::GetKeys() const
{
LOCK(cs_KeyStore);
if (!m_storage.HasEncryptionKeys()) {
return FillableSigningProvider::GetKeys();
}
std::set<CKeyID> set_address;
for (const auto& mi : mapCryptedKeys) {
set_address.insert(mi.first);
}
return set_address;
}
void LegacyScriptPubKeyMan::SetInternal(bool internal) {}
bool DescriptorScriptPubKeyMan::GetNewDestination(const OutputType type, CTxDestination& dest, std::string& error)
{
// Returns true if this descriptor supports getting new addresses. Conditions where we may be unable to fetch them (e.g. locked) are caught later
if (!CanGetAddresses(m_internal)) {
error = "No addresses available";
return false;
}
{
LOCK(cs_desc_man);
assert(m_wallet_descriptor.descriptor->IsSingleType()); // This is a combo descriptor which should not be an active descriptor
Optional<OutputType> desc_addr_type = m_wallet_descriptor.descriptor->GetOutputType();
assert(desc_addr_type);
if (type != *desc_addr_type) {
throw std::runtime_error(std::string(__func__) + ": Types are inconsistent");
}
TopUp();
// Get the scriptPubKey from the descriptor
FlatSigningProvider out_keys;
std::vector<CScript> scripts_temp;
if (m_wallet_descriptor.range_end <= m_max_cached_index && !TopUp(1)) {
// We can't generate anymore keys
error = "Error: Keypool ran out, please call keypoolrefill first";
return false;
}
if (!m_wallet_descriptor.descriptor->ExpandFromCache(m_wallet_descriptor.next_index, m_wallet_descriptor.cache, scripts_temp, out_keys)) {
// We can't generate anymore keys
error = "Error: Keypool ran out, please call keypoolrefill first";
return false;
}
Optional<OutputType> out_script_type = m_wallet_descriptor.descriptor->GetOutputType();
if (out_script_type && out_script_type == type) {
ExtractDestination(scripts_temp[0], dest);
} else {
throw std::runtime_error(std::string(__func__) + ": Types are inconsistent. Stored type does not match type of newly generated address");
}
m_wallet_descriptor.next_index++;
WalletBatch(m_storage.GetDatabase()).WriteDescriptor(GetID(), m_wallet_descriptor);
return true;
}
}
isminetype DescriptorScriptPubKeyMan::IsMine(const CScript& script) const
{
LOCK(cs_desc_man);
if (m_map_script_pub_keys.count(script) > 0) {
return ISMINE_SPENDABLE;
}
return ISMINE_NO;
}
bool DescriptorScriptPubKeyMan::CheckDecryptionKey(const CKeyingMaterial& master_key, bool accept_no_keys)
{
LOCK(cs_desc_man);
if (!m_map_keys.empty()) {
return false;
}
bool keyPass = m_map_crypted_keys.empty(); // Always pass when there are no encrypted keys
bool keyFail = false;
for (const auto& mi : m_map_crypted_keys) {
const CPubKey &pubkey = mi.second.first;
const std::vector<unsigned char> &crypted_secret = mi.second.second;
CKey key;
if (!DecryptKey(master_key, crypted_secret, pubkey, key)) {
keyFail = true;
break;
}
keyPass = true;
if (m_decryption_thoroughly_checked)
break;
}
if (keyPass && keyFail) {
LogPrintf("The wallet is probably corrupted: Some keys decrypt but not all.\n");
throw std::runtime_error("Error unlocking wallet: some keys decrypt but not all. Your wallet file may be corrupt.");
}
if (keyFail || (!keyPass && !accept_no_keys)) {
return false;
}
m_decryption_thoroughly_checked = true;
return true;
}
bool DescriptorScriptPubKeyMan::Encrypt(const CKeyingMaterial& master_key, WalletBatch* batch)
{
LOCK(cs_desc_man);
if (!m_map_crypted_keys.empty()) {
return false;
}
for (const KeyMap::value_type& key_in : m_map_keys)
{
const CKey &key = key_in.second;
CPubKey pubkey = key.GetPubKey();
CKeyingMaterial secret(key.begin(), key.end());
std::vector<unsigned char> crypted_secret;
if (!EncryptSecret(master_key, secret, pubkey.GetHash(), crypted_secret)) {
return false;
}
m_map_crypted_keys[pubkey.GetID()] = make_pair(pubkey, crypted_secret);
batch->WriteCryptedDescriptorKey(GetID(), pubkey, crypted_secret);
}
m_map_keys.clear();
return true;
}
bool DescriptorScriptPubKeyMan::GetReservedDestination(const OutputType type, bool internal, CTxDestination& address, int64_t& index, CKeyPool& keypool)
{
LOCK(cs_desc_man);
std::string error;
bool result = GetNewDestination(type, address, error);
index = m_wallet_descriptor.next_index - 1;
return result;
}
void DescriptorScriptPubKeyMan::ReturnDestination(int64_t index, bool internal, const CTxDestination& addr)
{
LOCK(cs_desc_man);
// Only return when the index was the most recent
if (m_wallet_descriptor.next_index - 1 == index) {
m_wallet_descriptor.next_index--;
}
WalletBatch(m_storage.GetDatabase()).WriteDescriptor(GetID(), m_wallet_descriptor);
NotifyCanGetAddressesChanged();
}
std::map<CKeyID, CKey> DescriptorScriptPubKeyMan::GetKeys() const
{
AssertLockHeld(cs_desc_man);
if (m_storage.HasEncryptionKeys() && !m_storage.IsLocked()) {
KeyMap keys;
for (auto key_pair : m_map_crypted_keys) {
const CPubKey& pubkey = key_pair.second.first;
const std::vector<unsigned char>& crypted_secret = key_pair.second.second;
CKey key;
DecryptKey(m_storage.GetEncryptionKey(), crypted_secret, pubkey, key);
keys[pubkey.GetID()] = key;
}
return keys;
}
return m_map_keys;
}
bool DescriptorScriptPubKeyMan::TopUp(unsigned int size)
{
LOCK(cs_desc_man);
unsigned int target_size;
if (size > 0) {
target_size = size;
} else {
target_size = std::max(gArgs.GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 1);
}
// Calculate the new range_end
int32_t new_range_end = std::max(m_wallet_descriptor.next_index + (int32_t)target_size, m_wallet_descriptor.range_end);
// If the descriptor is not ranged, we actually just want to fill the first cache item
if (!m_wallet_descriptor.descriptor->IsRange()) {
new_range_end = 1;
m_wallet_descriptor.range_end = 1;
m_wallet_descriptor.range_start = 0;
}
FlatSigningProvider provider;
provider.keys = GetKeys();
WalletBatch batch(m_storage.GetDatabase());
uint256 id = GetID();
for (int32_t i = m_max_cached_index + 1; i < new_range_end; ++i) {
FlatSigningProvider out_keys;
std::vector<CScript> scripts_temp;
DescriptorCache temp_cache;
// Maybe we have a cached xpub and we can expand from the cache first
if (!m_wallet_descriptor.descriptor->ExpandFromCache(i, m_wallet_descriptor.cache, scripts_temp, out_keys)) {
if (!m_wallet_descriptor.descriptor->Expand(i, provider, scripts_temp, out_keys, &temp_cache)) return false;
}
// Add all of the scriptPubKeys to the scriptPubKey set
for (const CScript& script : scripts_temp) {
m_map_script_pub_keys[script] = i;
}
for (const auto& pk_pair : out_keys.pubkeys) {
const CPubKey& pubkey = pk_pair.second;
if (m_map_pubkeys.count(pubkey) != 0) {
// We don't need to give an error here.
// It doesn't matter which of many valid indexes the pubkey has, we just need an index where we can derive it and it's private key
continue;
}
m_map_pubkeys[pubkey] = i;
}
// Write the cache
for (const auto& parent_xpub_pair : temp_cache.GetCachedParentExtPubKeys()) {
CExtPubKey xpub;
if (m_wallet_descriptor.cache.GetCachedParentExtPubKey(parent_xpub_pair.first, xpub)) {
if (xpub != parent_xpub_pair.second) {
throw std::runtime_error(std::string(__func__) + ": New cached parent xpub does not match already cached parent xpub");
}
continue;
}
if (!batch.WriteDescriptorParentCache(parent_xpub_pair.second, id, parent_xpub_pair.first)) {
throw std::runtime_error(std::string(__func__) + ": writing cache item failed");
}
m_wallet_descriptor.cache.CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
}
for (const auto& derived_xpub_map_pair : temp_cache.GetCachedDerivedExtPubKeys()) {
for (const auto& derived_xpub_pair : derived_xpub_map_pair.second) {
CExtPubKey xpub;
if (m_wallet_descriptor.cache.GetCachedDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, xpub)) {
if (xpub != derived_xpub_pair.second) {
throw std::runtime_error(std::string(__func__) + ": New cached derived xpub does not match already cached derived xpub");
}
continue;
}
if (!batch.WriteDescriptorDerivedCache(derived_xpub_pair.second, id, derived_xpub_map_pair.first, derived_xpub_pair.first)) {
throw std::runtime_error(std::string(__func__) + ": writing cache item failed");
}
m_wallet_descriptor.cache.CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
}
}
m_max_cached_index++;
}
m_wallet_descriptor.range_end = new_range_end;
batch.WriteDescriptor(GetID(), m_wallet_descriptor);
// By this point, the cache size should be the size of the entire range
assert(m_wallet_descriptor.range_end - 1 == m_max_cached_index);
NotifyCanGetAddressesChanged();
return true;
}
void DescriptorScriptPubKeyMan::MarkUnusedAddresses(const CScript& script)
{
LOCK(cs_desc_man);
if (IsMine(script)) {
int32_t index = m_map_script_pub_keys[script];
if (index >= m_wallet_descriptor.next_index) {
WalletLogPrintf("%s: Detected a used keypool item at index %d, mark all keypool items up to this item as used\n", __func__, index);
m_wallet_descriptor.next_index = index + 1;
}
if (!TopUp()) {
WalletLogPrintf("%s: Topping up keypool failed (locked wallet)\n", __func__);
}
}
}
void DescriptorScriptPubKeyMan::AddDescriptorKey(const CKey& key, const CPubKey &pubkey)
{
LOCK(cs_desc_man);
WalletBatch batch(m_storage.GetDatabase());
if (!AddDescriptorKeyWithDB(batch, key, pubkey)) {
throw std::runtime_error(std::string(__func__) + ": writing descriptor private key failed");
}
}
bool DescriptorScriptPubKeyMan::AddDescriptorKeyWithDB(WalletBatch& batch, const CKey& key, const CPubKey &pubkey)
{
AssertLockHeld(cs_desc_man);
assert(!m_storage.IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS));
if (m_storage.HasEncryptionKeys()) {
if (m_storage.IsLocked()) {
return false;
}
std::vector<unsigned char> crypted_secret;
CKeyingMaterial secret(key.begin(), key.end());
if (!EncryptSecret(m_storage.GetEncryptionKey(), secret, pubkey.GetHash(), crypted_secret)) {
return false;
}
m_map_crypted_keys[pubkey.GetID()] = make_pair(pubkey, crypted_secret);
return batch.WriteCryptedDescriptorKey(GetID(), pubkey, crypted_secret);
} else {
m_map_keys[pubkey.GetID()] = key;
return batch.WriteDescriptorKey(GetID(), pubkey, key.GetPrivKey());
}
}
bool DescriptorScriptPubKeyMan::SetupDescriptorGeneration(const CExtKey& master_key, OutputType addr_type)
{
LOCK(cs_desc_man);
assert(m_storage.IsWalletFlagSet(WALLET_FLAG_DESCRIPTORS));
// Ignore when there is already a descriptor
if (m_wallet_descriptor.descriptor) {
return false;
}
int64_t creation_time = GetTime();
std::string xpub = EncodeExtPubKey(master_key.Neuter());
// Build descriptor string
std::string desc_prefix;
std::string desc_suffix = "/*)";
switch (addr_type) {
case OutputType::LEGACY: {
desc_prefix = "pkh(" + xpub + "/44'";
break;
}
case OutputType::P2SH_SEGWIT: {
desc_prefix = "sh(wpkh(" + xpub + "/49'";
desc_suffix += ")";
break;
}
case OutputType::BECH32: {
desc_prefix = "wpkh(" + xpub + "/84'";
break;
}
} // no default case, so the compiler can warn about missing cases
assert(!desc_prefix.empty());
// Mainnet derives at 0', testnet and regtest derive at 1'
if (Params().IsTestChain()) {
desc_prefix += "/1'";
} else {
desc_prefix += "/0'";
}
std::string internal_path = m_internal ? "/1" : "/0";
std::string desc_str = desc_prefix + "/0'" + internal_path + desc_suffix;
// Make the descriptor
FlatSigningProvider keys;
std::string error;
std::unique_ptr<Descriptor> desc = Parse(desc_str, keys, error, false);
WalletDescriptor w_desc(std::move(desc), creation_time, 0, 0, 0);
m_wallet_descriptor = w_desc;
// Store the master private key, and descriptor
WalletBatch batch(m_storage.GetDatabase());
if (!AddDescriptorKeyWithDB(batch, master_key.key, master_key.key.GetPubKey())) {
throw std::runtime_error(std::string(__func__) + ": writing descriptor master private key failed");
}
if (!batch.WriteDescriptor(GetID(), m_wallet_descriptor)) {
throw std::runtime_error(std::string(__func__) + ": writing descriptor failed");
}
// TopUp
TopUp();
m_storage.UnsetBlankWalletFlag(batch);
return true;
}
bool DescriptorScriptPubKeyMan::IsHDEnabled() const
{
LOCK(cs_desc_man);
return m_wallet_descriptor.descriptor->IsRange();
}
bool DescriptorScriptPubKeyMan::CanGetAddresses(bool internal) const
{
// We can only give out addresses from descriptors that are single type (not combo), ranged,
// and either have cached keys or can generate more keys (ignoring encryption)
LOCK(cs_desc_man);
return m_wallet_descriptor.descriptor->IsSingleType() &&
m_wallet_descriptor.descriptor->IsRange() &&
(HavePrivateKeys() || m_wallet_descriptor.next_index < m_wallet_descriptor.range_end);
}
bool DescriptorScriptPubKeyMan::HavePrivateKeys() const
{
LOCK(cs_desc_man);
return m_map_keys.size() > 0 || m_map_crypted_keys.size() > 0;
}
int64_t DescriptorScriptPubKeyMan::GetOldestKeyPoolTime() const
{
// This is only used for getwalletinfo output and isn't relevant to descriptor wallets.
// The magic number 0 indicates that it shouldn't be displayed so that's what we return.
return 0;
}
size_t DescriptorScriptPubKeyMan::KeypoolCountExternalKeys() const
{
if (m_internal) {
return 0;
}
return GetKeyPoolSize();
}
unsigned int DescriptorScriptPubKeyMan::GetKeyPoolSize() const
{
LOCK(cs_desc_man);
return m_wallet_descriptor.range_end - m_wallet_descriptor.next_index;
}
int64_t DescriptorScriptPubKeyMan::GetTimeFirstKey() const
{
LOCK(cs_desc_man);
return m_wallet_descriptor.creation_time;
}
std::unique_ptr<FlatSigningProvider> DescriptorScriptPubKeyMan::GetSigningProvider(const CScript& script, bool include_private) const
{
LOCK(cs_desc_man);
// Find the index of the script
auto it = m_map_script_pub_keys.find(script);
if (it == m_map_script_pub_keys.end()) {
return nullptr;
}
int32_t index = it->second;
return GetSigningProvider(index, include_private);
}
std::unique_ptr<FlatSigningProvider> DescriptorScriptPubKeyMan::GetSigningProvider(const CPubKey& pubkey) const
{
LOCK(cs_desc_man);
// Find index of the pubkey
auto it = m_map_pubkeys.find(pubkey);
if (it == m_map_pubkeys.end()) {
return nullptr;
}
int32_t index = it->second;
// Always try to get the signing provider with private keys. This function should only be called during signing anyways
return GetSigningProvider(index, true);
}
std::unique_ptr<FlatSigningProvider> DescriptorScriptPubKeyMan::GetSigningProvider(int32_t index, bool include_private) const
{
AssertLockHeld(cs_desc_man);
// Get the scripts, keys, and key origins for this script
std::unique_ptr<FlatSigningProvider> out_keys = MakeUnique<FlatSigningProvider>();
std::vector<CScript> scripts_temp;
if (!m_wallet_descriptor.descriptor->ExpandFromCache(index, m_wallet_descriptor.cache, scripts_temp, *out_keys)) return nullptr;
if (HavePrivateKeys() && include_private) {
FlatSigningProvider master_provider;
master_provider.keys = GetKeys();
m_wallet_descriptor.descriptor->ExpandPrivate(index, master_provider, *out_keys);
}
return out_keys;
}
std::unique_ptr<SigningProvider> DescriptorScriptPubKeyMan::GetSolvingProvider(const CScript& script) const
{
return GetSigningProvider(script, false);
}
bool DescriptorScriptPubKeyMan::CanProvide(const CScript& script, SignatureData& sigdata)
{
return IsMine(script);
}
bool DescriptorScriptPubKeyMan::SignTransaction(CMutableTransaction& tx, const std::map<COutPoint, Coin>& coins, int sighash, std::map<int, std::string>& input_errors) const
{
std::unique_ptr<FlatSigningProvider> keys = MakeUnique<FlatSigningProvider>();
for (const auto& coin_pair : coins) {
std::unique_ptr<FlatSigningProvider> coin_keys = GetSigningProvider(coin_pair.second.out.scriptPubKey, true);
if (!coin_keys) {
continue;
}
*keys = Merge(*keys, *coin_keys);
}
return ::SignTransaction(tx, keys.get(), coins, sighash, input_errors);
}
SigningResult DescriptorScriptPubKeyMan::SignMessage(const std::string& message, const PKHash& pkhash, std::string& str_sig) const
{
std::unique_ptr<FlatSigningProvider> keys = GetSigningProvider(GetScriptForDestination(pkhash), true);
if (!keys) {
return SigningResult::PRIVATE_KEY_NOT_AVAILABLE;
}
CKey key;
if (!keys->GetKey(ToKeyID(pkhash), key)) {
return SigningResult::PRIVATE_KEY_NOT_AVAILABLE;
}
if (!MessageSign(key, message, str_sig)) {
return SigningResult::SIGNING_FAILED;
}
return SigningResult::OK;
}
TransactionError DescriptorScriptPubKeyMan::FillPSBT(PartiallySignedTransaction& psbtx, int sighash_type, bool sign, bool bip32derivs, int* n_signed) const
{
if (n_signed) {
*n_signed = 0;
}
for (unsigned int i = 0; i < psbtx.tx->vin.size(); ++i) {
const CTxIn& txin = psbtx.tx->vin[i];
PSBTInput& input = psbtx.inputs.at(i);
if (PSBTInputSigned(input)) {
continue;
}
// Get the Sighash type
if (sign && input.sighash_type > 0 && input.sighash_type != sighash_type) {
return TransactionError::SIGHASH_MISMATCH;
}
// Get the scriptPubKey to know which SigningProvider to use
CScript script;
if (!input.witness_utxo.IsNull()) {
script = input.witness_utxo.scriptPubKey;
} else if (input.non_witness_utxo) {
if (txin.prevout.n >= input.non_witness_utxo->vout.size()) {
return TransactionError::MISSING_INPUTS;
}
script = input.non_witness_utxo->vout[txin.prevout.n].scriptPubKey;
} else {
// There's no UTXO so we can just skip this now
continue;
}
SignatureData sigdata;
input.FillSignatureData(sigdata);
std::unique_ptr<FlatSigningProvider> keys = MakeUnique<FlatSigningProvider>();
std::unique_ptr<FlatSigningProvider> script_keys = GetSigningProvider(script, sign);
if (script_keys) {
*keys = Merge(*keys, *script_keys);
} else {
// Maybe there are pubkeys listed that we can sign for
script_keys = MakeUnique<FlatSigningProvider>();
for (const auto& pk_pair : input.hd_keypaths) {
const CPubKey& pubkey = pk_pair.first;
std::unique_ptr<FlatSigningProvider> pk_keys = GetSigningProvider(pubkey);
if (pk_keys) {
*keys = Merge(*keys, *pk_keys);
}
}
}
SignPSBTInput(HidingSigningProvider(keys.get(), !sign, !bip32derivs), psbtx, i, sighash_type);
bool signed_one = PSBTInputSigned(input);
if (n_signed && (signed_one || !sign)) {
// If sign is false, we assume that we _could_ sign if we get here. This
// will never have false negatives; it is hard to tell under what i
// circumstances it could have false positives.
(*n_signed)++;
}
}
// Fill in the bip32 keypaths and redeemscripts for the outputs so that hardware wallets can identify change
for (unsigned int i = 0; i < psbtx.tx->vout.size(); ++i) {
std::unique_ptr<SigningProvider> keys = GetSolvingProvider(psbtx.tx->vout.at(i).scriptPubKey);
if (!keys) {
continue;
}
UpdatePSBTOutput(HidingSigningProvider(keys.get(), true, !bip32derivs), psbtx, i);
}
return TransactionError::OK;
}
std::unique_ptr<CKeyMetadata> DescriptorScriptPubKeyMan::GetMetadata(const CTxDestination& dest) const
{
std::unique_ptr<SigningProvider> provider = GetSigningProvider(GetScriptForDestination(dest));
if (provider) {
KeyOriginInfo orig;
CKeyID key_id = GetKeyForDestination(*provider, dest);
if (provider->GetKeyOrigin(key_id, orig)) {
LOCK(cs_desc_man);
std::unique_ptr<CKeyMetadata> meta = MakeUnique<CKeyMetadata>();
meta->key_origin = orig;
meta->has_key_origin = true;
meta->nCreateTime = m_wallet_descriptor.creation_time;
return meta;
}
}
return nullptr;
}
uint256 DescriptorScriptPubKeyMan::GetID() const
{
LOCK(cs_desc_man);
std::string desc_str = m_wallet_descriptor.descriptor->ToString();
uint256 id;
CSHA256().Write((unsigned char*)desc_str.data(), desc_str.size()).Finalize(id.begin());
return id;
}
void DescriptorScriptPubKeyMan::SetInternal(bool internal)
{
this->m_internal = internal;
}
void DescriptorScriptPubKeyMan::SetCache(const DescriptorCache& cache)
{
LOCK(cs_desc_man);
m_wallet_descriptor.cache = cache;
for (int32_t i = m_wallet_descriptor.range_start; i < m_wallet_descriptor.range_end; ++i) {
FlatSigningProvider out_keys;
std::vector<CScript> scripts_temp;
if (!m_wallet_descriptor.descriptor->ExpandFromCache(i, m_wallet_descriptor.cache, scripts_temp, out_keys)) {
throw std::runtime_error("Error: Unable to expand wallet descriptor from cache");
}
// Add all of the scriptPubKeys to the scriptPubKey set
for (const CScript& script : scripts_temp) {
if (m_map_script_pub_keys.count(script) != 0) {
throw std::runtime_error(strprintf("Error: Already loaded script at index %d as being at index %d", i, m_map_script_pub_keys[script]));
}
m_map_script_pub_keys[script] = i;
}
for (const auto& pk_pair : out_keys.pubkeys) {
const CPubKey& pubkey = pk_pair.second;
if (m_map_pubkeys.count(pubkey) != 0) {
// We don't need to give an error here.
// It doesn't matter which of many valid indexes the pubkey has, we just need an index where we can derive it and it's private key
continue;
}
m_map_pubkeys[pubkey] = i;
}
m_max_cached_index++;
}
}
bool DescriptorScriptPubKeyMan::AddKey(const CKeyID& key_id, const CKey& key)
{
LOCK(cs_desc_man);
m_map_keys[key_id] = key;
return true;
}
bool DescriptorScriptPubKeyMan::AddCryptedKey(const CKeyID& key_id, const CPubKey& pubkey, const std::vector<unsigned char>& crypted_key)
{
LOCK(cs_desc_man);
if (!m_map_keys.empty()) {
return false;
}
m_map_crypted_keys[key_id] = make_pair(pubkey, crypted_key);
return true;
}
bool DescriptorScriptPubKeyMan::HasWalletDescriptor(const WalletDescriptor& desc) const
{
LOCK(cs_desc_man);
return m_wallet_descriptor.descriptor != nullptr && desc.descriptor != nullptr && m_wallet_descriptor.descriptor->ToString() == desc.descriptor->ToString();
}
void DescriptorScriptPubKeyMan::WriteDescriptor()
{
LOCK(cs_desc_man);
WalletBatch batch(m_storage.GetDatabase());
if (!batch.WriteDescriptor(GetID(), m_wallet_descriptor)) {
throw std::runtime_error(std::string(__func__) + ": writing descriptor failed");
}
}
const WalletDescriptor DescriptorScriptPubKeyMan::GetWalletDescriptor() const
{
return m_wallet_descriptor;
}
const std::vector<CScript> DescriptorScriptPubKeyMan::GetScriptPubKeys() const
{
LOCK(cs_desc_man);
std::vector<CScript> script_pub_keys;
script_pub_keys.reserve(m_map_script_pub_keys.size());
for (auto const& script_pub_key: m_map_script_pub_keys) {
script_pub_keys.push_back(script_pub_key.first);
}
return script_pub_keys;
}