mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-04-29 14:59:39 -04:00
257 lines
9.9 KiB
C++
257 lines
9.9 KiB
C++
// Copyright (c) The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_UTIL_FEEFRAC_H
|
|
#define BITCOIN_UTIL_FEEFRAC_H
|
|
|
|
#include <stdint.h>
|
|
#include <compare>
|
|
#include <vector>
|
|
#include <span.h>
|
|
#include <util/check.h>
|
|
|
|
/** Data structure storing a fee and size, ordered by increasing fee/size.
|
|
*
|
|
* The size of a FeeFrac cannot be zero unless the fee is also zero.
|
|
*
|
|
* FeeFracs have a total ordering, first by increasing feerate (ratio of fee over size), and then
|
|
* by decreasing size. The empty FeeFrac (fee and size both 0) sorts last. So for example, the
|
|
* following FeeFracs are in sorted order:
|
|
*
|
|
* - fee=0 size=1 (feerate 0)
|
|
* - fee=1 size=2 (feerate 0.5)
|
|
* - fee=2 size=3 (feerate 0.667...)
|
|
* - fee=2 size=2 (feerate 1)
|
|
* - fee=1 size=1 (feerate 1)
|
|
* - fee=3 size=2 (feerate 1.5)
|
|
* - fee=2 size=1 (feerate 2)
|
|
* - fee=0 size=0 (undefined feerate)
|
|
*
|
|
* A FeeFrac is considered "better" if it sorts after another, by this ordering. All standard
|
|
* comparison operators (<=>, ==, !=, >, <, >=, <=) respect this ordering.
|
|
*
|
|
* The FeeRateCompare, and >> and << operators only compare feerate and treat equal feerate but
|
|
* different size as equivalent. The empty FeeFrac is neither lower or higher in feerate than any
|
|
* other.
|
|
*/
|
|
struct FeeFrac
|
|
{
|
|
/** Helper function for 32*64 signed multiplication, returning an unspecified but totally
|
|
* ordered type. This is a fallback version, separate so it can be tested on platforms where
|
|
* it isn't actually needed. */
|
|
static inline std::pair<int64_t, uint32_t> MulFallback(int64_t a, int32_t b) noexcept
|
|
{
|
|
int64_t low = int64_t{static_cast<uint32_t>(a)} * b;
|
|
int64_t high = (a >> 32) * b;
|
|
return {high + (low >> 32), static_cast<uint32_t>(low)};
|
|
}
|
|
|
|
/** Helper function for 96/32 signed division, rounding towards negative infinity (if
|
|
* round_down) or positive infinity (if !round_down). This is a fallback version, separate so
|
|
* that it can be tested on platforms where it isn't actually needed.
|
|
*
|
|
* The exact behavior with negative n does not really matter, but this implementation chooses
|
|
* to be consistent for testability reasons.
|
|
*
|
|
* The result must fit in an int64_t, and d must be strictly positive. */
|
|
static inline int64_t DivFallback(std::pair<int64_t, uint32_t> n, int32_t d, bool round_down) noexcept
|
|
{
|
|
Assume(d > 0);
|
|
// Compute quot_high = n.first / d, so the result becomes
|
|
// (n.second + (n.first - quot_high * d) * 2**32) / d + (quot_high * 2**32), or
|
|
// (n.second + (n.first % d) * 2**32) / d + (quot_high * 2**32).
|
|
int64_t quot_high = n.first / d;
|
|
// Evaluate the parenthesized expression above, so the result becomes
|
|
// n_low / d + (quot_high * 2**32)
|
|
int64_t n_low = ((n.first % d) << 32) + n.second;
|
|
// Evaluate the division so the result becomes quot_low + quot_high * 2**32. It is possible
|
|
// that the / operator here rounds in the wrong direction (if n_low is not a multiple of
|
|
// size, and is (if round_down) negative, or (if !round_down) positive). If so, make a
|
|
// correction.
|
|
int64_t quot_low = n_low / d;
|
|
int32_t mod_low = n_low % d;
|
|
quot_low += (mod_low > 0) - (mod_low && round_down);
|
|
// Combine and return the result
|
|
return (quot_high << 32) + quot_low;
|
|
}
|
|
|
|
#ifdef __SIZEOF_INT128__
|
|
/** Helper function for 32*64 signed multiplication, returning an unspecified but totally
|
|
* ordered type. This is a version relying on __int128. */
|
|
static inline __int128 Mul(int64_t a, int32_t b) noexcept
|
|
{
|
|
return __int128{a} * b;
|
|
}
|
|
|
|
/** Helper function for 96/32 signed division, rounding towards negative infinity (if
|
|
* round_down), or towards positive infinity (if !round_down). This is a
|
|
* version relying on __int128.
|
|
*
|
|
* The result must fit in an int64_t, and d must be strictly positive. */
|
|
static inline int64_t Div(__int128 n, int32_t d, bool round_down) noexcept
|
|
{
|
|
Assume(d > 0);
|
|
// Compute the division.
|
|
int64_t quot = n / d;
|
|
int32_t mod = n % d;
|
|
// Correct result if the / operator above rounded in the wrong direction.
|
|
return quot + (mod > 0) - (mod && round_down);
|
|
}
|
|
#else
|
|
static constexpr auto Mul = MulFallback;
|
|
static constexpr auto Div = DivFallback;
|
|
#endif
|
|
|
|
int64_t fee;
|
|
int32_t size;
|
|
|
|
/** Construct an IsEmpty() FeeFrac. */
|
|
constexpr inline FeeFrac() noexcept : fee{0}, size{0} {}
|
|
|
|
/** Construct a FeeFrac with specified fee and size. */
|
|
constexpr inline FeeFrac(int64_t f, int32_t s) noexcept : fee{f}, size{s} {}
|
|
|
|
constexpr inline FeeFrac(const FeeFrac&) noexcept = default;
|
|
constexpr inline FeeFrac& operator=(const FeeFrac&) noexcept = default;
|
|
|
|
/** Check if this is empty (size and fee are 0). */
|
|
bool inline IsEmpty() const noexcept {
|
|
return size == 0;
|
|
}
|
|
|
|
/** Add fee and size of another FeeFrac to this one. */
|
|
void inline operator+=(const FeeFrac& other) noexcept
|
|
{
|
|
fee += other.fee;
|
|
size += other.size;
|
|
}
|
|
|
|
/** Subtract fee and size of another FeeFrac from this one. */
|
|
void inline operator-=(const FeeFrac& other) noexcept
|
|
{
|
|
fee -= other.fee;
|
|
size -= other.size;
|
|
}
|
|
|
|
/** Sum fee and size. */
|
|
friend inline FeeFrac operator+(const FeeFrac& a, const FeeFrac& b) noexcept
|
|
{
|
|
return {a.fee + b.fee, a.size + b.size};
|
|
}
|
|
|
|
/** Subtract both fee and size. */
|
|
friend inline FeeFrac operator-(const FeeFrac& a, const FeeFrac& b) noexcept
|
|
{
|
|
return {a.fee - b.fee, a.size - b.size};
|
|
}
|
|
|
|
/** Check if two FeeFrac objects are equal (both same fee and same size). */
|
|
friend inline bool operator==(const FeeFrac& a, const FeeFrac& b) noexcept
|
|
{
|
|
return a.fee == b.fee && a.size == b.size;
|
|
}
|
|
|
|
/** Compare two FeeFracs just by feerate. */
|
|
friend inline std::weak_ordering FeeRateCompare(const FeeFrac& a, const FeeFrac& b) noexcept
|
|
{
|
|
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
|
|
return cross_a <=> cross_b;
|
|
}
|
|
|
|
/** Check if a FeeFrac object has strictly lower feerate than another. */
|
|
friend inline bool operator<<(const FeeFrac& a, const FeeFrac& b) noexcept
|
|
{
|
|
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
|
|
return cross_a < cross_b;
|
|
}
|
|
|
|
/** Check if a FeeFrac object has strictly higher feerate than another. */
|
|
friend inline bool operator>>(const FeeFrac& a, const FeeFrac& b) noexcept
|
|
{
|
|
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
|
|
return cross_a > cross_b;
|
|
}
|
|
|
|
/** Compare two FeeFracs. <, >, <=, and >= are auto-generated from this. */
|
|
friend inline std::strong_ordering operator<=>(const FeeFrac& a, const FeeFrac& b) noexcept
|
|
{
|
|
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
|
|
if (cross_a == cross_b) return b.size <=> a.size;
|
|
return cross_a <=> cross_b;
|
|
}
|
|
|
|
/** Swap two FeeFracs. */
|
|
friend inline void swap(FeeFrac& a, FeeFrac& b) noexcept
|
|
{
|
|
std::swap(a.fee, b.fee);
|
|
std::swap(a.size, b.size);
|
|
}
|
|
|
|
/** Compute the fee for a given size `at_size` using this object's feerate.
|
|
*
|
|
* This effectively corresponds to evaluating (this->fee * at_size) / this->size, with the
|
|
* result rounded towards negative infinity (if RoundDown) or towards positive infinity
|
|
* (if !RoundDown).
|
|
*
|
|
* Requires this->size > 0, at_size >= 0, and that the correct result fits in a int64_t. This
|
|
* is guaranteed to be the case when 0 <= at_size <= this->size.
|
|
*/
|
|
template<bool RoundDown>
|
|
int64_t EvaluateFee(int32_t at_size) const noexcept
|
|
{
|
|
Assume(size > 0);
|
|
Assume(at_size >= 0);
|
|
if (fee >= 0 && fee < 0x200000000) [[likely]] {
|
|
// Common case where (this->fee * at_size) is guaranteed to fit in a uint64_t.
|
|
if constexpr (RoundDown) {
|
|
return (uint64_t(fee) * at_size) / uint32_t(size);
|
|
} else {
|
|
return (uint64_t(fee) * at_size + size - 1U) / uint32_t(size);
|
|
}
|
|
} else {
|
|
// Otherwise, use Mul and Div.
|
|
return Div(Mul(fee, at_size), size, RoundDown);
|
|
}
|
|
}
|
|
|
|
public:
|
|
/** Compute the fee for a given size `at_size` using this object's feerate, rounding down. */
|
|
int64_t EvaluateFeeDown(int32_t at_size) const noexcept { return EvaluateFee<true>(at_size); }
|
|
/** Compute the fee for a given size `at_size` using this object's feerate, rounding up. */
|
|
int64_t EvaluateFeeUp(int32_t at_size) const noexcept { return EvaluateFee<false>(at_size); }
|
|
};
|
|
|
|
/** Compare the feerate diagrams implied by the provided sorted chunks data.
|
|
*
|
|
* The implied diagram for each starts at (0, 0), then contains for each chunk the cumulative fee
|
|
* and size up to that chunk, and then extends infinitely to the right with a horizontal line.
|
|
*
|
|
* The caller must guarantee that the sum of the FeeFracs in either of the chunks' data set do not
|
|
* overflow (so sum fees < 2^63, and sum sizes < 2^31).
|
|
*/
|
|
std::partial_ordering CompareChunks(std::span<const FeeFrac> chunks0, std::span<const FeeFrac> chunks1);
|
|
|
|
/** Tagged wrapper around FeeFrac to avoid unit confusion. */
|
|
template<typename Tag>
|
|
struct FeePerUnit : public FeeFrac
|
|
{
|
|
// Inherit FeeFrac constructors.
|
|
using FeeFrac::FeeFrac;
|
|
|
|
/** Convert a FeeFrac to a FeePerUnit. */
|
|
static FeePerUnit FromFeeFrac(const FeeFrac& feefrac) noexcept
|
|
{
|
|
return {feefrac.fee, feefrac.size};
|
|
}
|
|
};
|
|
|
|
// FeePerUnit instance for satoshi / vbyte.
|
|
struct VSizeTag {};
|
|
using FeePerVSize = FeePerUnit<VSizeTag>;
|
|
|
|
// FeePerUnit instance for satoshi / WU.
|
|
struct WeightTag {};
|
|
using FeePerWeight = FeePerUnit<WeightTag>;
|
|
|
|
#endif // BITCOIN_UTIL_FEEFRAC_H
|