bitcoin/src/random.h
Hodlinator 9bb92c0e7f
util: Remove RandAddSeedPerfmon
RegQueryValueExA(HKEY_PERFORMANCE_DATA, ...) sometimes hangs bitcoind.exe on Windows during startup, at least on CI.

We have other sources of entropy to seed randomness with on Windows, so should be alright removing this. Might resurrect if less drastic fix is found.
2024-10-21 23:24:17 +02:00

468 lines
17 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_RANDOM_H
#define BITCOIN_RANDOM_H
#include <crypto/chacha20.h>
#include <crypto/common.h>
#include <span.h>
#include <uint256.h>
#include <util/check.h>
#include <bit>
#include <cassert>
#include <chrono>
#include <concepts>
#include <cstdint>
#include <limits>
#include <type_traits>
#include <vector>
/**
* Overall design of the RNG and entropy sources.
*
* We maintain a single global 256-bit RNG state for all high-quality randomness.
* The following (classes of) functions interact with that state by mixing in new
* entropy, and optionally extracting random output from it:
*
* - GetRandBytes, GetRandHash, GetRandDur, as well as construction of FastRandomContext
* objects, perform 'fast' seeding, consisting of mixing in:
* - A stack pointer (indirectly committing to calling thread and call stack)
* - A high-precision timestamp (rdtsc when available, c++ high_resolution_clock otherwise)
* - 64 bits from the hardware RNG (rdrand) when available.
* These entropy sources are very fast, and only designed to protect against situations
* where a VM state restore/copy results in multiple systems with the same randomness.
* FastRandomContext on the other hand does not protect against this once created, but
* is even faster (and acceptable to use inside tight loops).
*
* - The GetStrongRandBytes() function performs 'slow' seeding, including everything
* that fast seeding includes, but additionally:
* - OS entropy (/dev/urandom, getrandom(), ...). The application will terminate if
* this entropy source fails.
* - Another high-precision timestamp (indirectly committing to a benchmark of all the
* previous sources).
* These entropy sources are slower, but designed to make sure the RNG state contains
* fresh data that is unpredictable to attackers.
*
* - RandAddPeriodic() seeds everything that fast seeding includes, but additionally:
* - A high-precision timestamp
* - Dynamic environment data (clocks, resource usage, ...)
* - Strengthen the entropy for 10 ms using repeated SHA512.
* This is run once every minute.
*
* - On first use of the RNG (regardless of what function is called first), all entropy
* sources used in the 'slow' seeder are included, but also:
* - 256 bits from the hardware RNG (rdseed or rdrand) when available.
* - Dynamic environment data (performance monitoring, ...)
* - Static environment data
* - Strengthen the entropy for 100 ms using repeated SHA512.
*
* When mixing in new entropy, H = SHA512(entropy || old_rng_state) is computed, and
* (up to) the first 32 bytes of H are produced as output, while the last 32 bytes
* become the new RNG state.
*
* During tests, the RNG can be put into a special deterministic mode, in which the output
* of all RNG functions, with the exception of GetStrongRandBytes(), is replaced with the
* output of a deterministic RNG. This deterministic RNG does not gather entropy, and is
* unaffected by RandAddPeriodic() or RandAddEvent(). It produces pseudorandom data that
* only depends on the seed it was initialized with, possibly until it is reinitialized.
*/
/* ============================= INITIALIZATION AND ADDING ENTROPY ============================= */
/**
* Initialize global RNG state and log any CPU features that are used.
*
* Calling this function is optional. RNG state will be initialized when first
* needed if it is not called.
*/
void RandomInit();
/**
* Gather entropy from various expensive sources, and feed them to the PRNG state.
*
* Thread-safe.
*/
void RandAddPeriodic() noexcept;
/**
* Gathers entropy from the low bits of the time at which events occur. Should
* be called with a uint32_t describing the event at the time an event occurs.
*
* Thread-safe.
*/
void RandAddEvent(const uint32_t event_info) noexcept;
/* =========================== BASE RANDOMNESS GENERATION FUNCTIONS ===========================
*
* All produced randomness is eventually generated by one of these functions.
*/
/**
* Generate random data via the internal PRNG.
*
* These functions are designed to be fast (sub microsecond), but do not necessarily
* meaningfully add entropy to the PRNG state.
*
* In test mode (see SeedRandomForTest in src/test/util/random.h), the normal PRNG state is
* bypassed, and a deterministic, seeded, PRNG is used instead.
*
* Thread-safe.
*/
void GetRandBytes(Span<unsigned char> bytes) noexcept;
/**
* Gather entropy from various sources, feed it into the internal PRNG, and
* generate random data using it.
*
* This function will cause failure whenever the OS RNG fails.
*
* The normal PRNG is never bypassed here, even in test mode.
*
* Thread-safe.
*/
void GetStrongRandBytes(Span<unsigned char> bytes) noexcept;
/* ============================= RANDOM NUMBER GENERATION CLASSES =============================
*
* In this section, 3 classes are defined:
* - RandomMixin: a base class that adds functionality to all RNG classes.
* - FastRandomContext: a cryptographic RNG (seeded through GetRandBytes in its default
* constructor).
* - InsecureRandomContext: a non-cryptographic, very fast, RNG.
*/
// Forward declaration of RandomMixin, used in RandomNumberGenerator concept.
template<typename T>
class RandomMixin;
/** A concept for RandomMixin-based random number generators. */
template<typename T>
concept RandomNumberGenerator = requires(T& rng, Span<std::byte> s) {
// A random number generator must provide rand64().
{ rng.rand64() } noexcept -> std::same_as<uint64_t>;
// A random number generator must derive from RandomMixin, which adds other rand* functions.
requires std::derived_from<std::remove_reference_t<T>, RandomMixin<std::remove_reference_t<T>>>;
};
/** A concept for C++ std::chrono durations. */
template<typename T>
concept StdChronoDuration = requires {
[]<class Rep, class Period>(std::type_identity<std::chrono::duration<Rep, Period>>){}(
std::type_identity<T>());
};
/** Given a uniformly random uint64_t, return an exponentially distributed double with mean 1. */
double MakeExponentiallyDistributed(uint64_t uniform) noexcept;
/** Mixin class that provides helper randomness functions.
*
* Intended to be used through CRTP: https://en.cppreference.com/w/cpp/language/crtp.
* An RNG class FunkyRNG would derive publicly from RandomMixin<FunkyRNG>. This permits
* RandomMixin from accessing the derived class's rand64() function, while also allowing
* the derived class to provide more.
*
* The derived class must satisfy the RandomNumberGenerator concept.
*/
template<typename T>
class RandomMixin
{
private:
uint64_t bitbuf{0};
int bitbuf_size{0};
/** Access the underlying generator.
*
* This also enforces the RandomNumberGenerator concept. We cannot declare that in the template
* (no template<RandomNumberGenerator T>) because the type isn't fully instantiated yet there.
*/
RandomNumberGenerator auto& Impl() noexcept { return static_cast<T&>(*this); }
protected:
constexpr void FlushCache() noexcept
{
bitbuf = 0;
bitbuf_size = 0;
}
public:
constexpr RandomMixin() noexcept = default;
// Do not permit copying or moving an RNG.
RandomMixin(const RandomMixin&) = delete;
RandomMixin& operator=(const RandomMixin&) = delete;
RandomMixin(RandomMixin&&) = delete;
RandomMixin& operator=(RandomMixin&&) = delete;
/** Generate a random (bits)-bit integer. */
uint64_t randbits(int bits) noexcept
{
Assume(bits <= 64);
// Requests for the full 64 bits are passed through.
if (bits == 64) return Impl().rand64();
uint64_t ret;
if (bits <= bitbuf_size) {
// If there is enough entropy left in bitbuf, return its bottom bits bits.
ret = bitbuf;
bitbuf >>= bits;
bitbuf_size -= bits;
} else {
// If not, return all of bitbuf, supplemented with the (bits - bitbuf_size) bottom
// bits of a newly generated 64-bit number on top. The remainder of that generated
// number becomes the new bitbuf.
uint64_t gen = Impl().rand64();
ret = (gen << bitbuf_size) | bitbuf;
bitbuf = gen >> (bits - bitbuf_size);
bitbuf_size = 64 + bitbuf_size - bits;
}
// Return the bottom bits bits of ret.
return ret & ((uint64_t{1} << bits) - 1);
}
/** Same as above, but with compile-time fixed bits count. */
template<int Bits>
uint64_t randbits() noexcept
{
static_assert(Bits >= 0 && Bits <= 64);
if constexpr (Bits == 64) {
return Impl().rand64();
} else {
uint64_t ret;
if (Bits <= bitbuf_size) {
ret = bitbuf;
bitbuf >>= Bits;
bitbuf_size -= Bits;
} else {
uint64_t gen = Impl().rand64();
ret = (gen << bitbuf_size) | bitbuf;
bitbuf = gen >> (Bits - bitbuf_size);
bitbuf_size = 64 + bitbuf_size - Bits;
}
constexpr uint64_t MASK = (uint64_t{1} << Bits) - 1;
return ret & MASK;
}
}
/** Generate a random integer in the range [0..range), with range > 0. */
template<std::integral I>
I randrange(I range) noexcept
{
static_assert(std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max());
Assume(range > 0);
uint64_t maxval = range - 1U;
int bits = std::bit_width(maxval);
while (true) {
uint64_t ret = Impl().randbits(bits);
if (ret <= maxval) return ret;
}
}
/** Fill a Span with random bytes. */
void fillrand(Span<std::byte> span) noexcept
{
while (span.size() >= 8) {
uint64_t gen = Impl().rand64();
WriteLE64(UCharCast(span.data()), gen);
span = span.subspan(8);
}
if (span.size() >= 4) {
uint32_t gen = Impl().rand32();
WriteLE32(UCharCast(span.data()), gen);
span = span.subspan(4);
}
while (span.size()) {
span[0] = std::byte(Impl().template randbits<8>());
span = span.subspan(1);
}
}
/** Generate a random integer in its entire (non-negative) range. */
template<std::integral I>
I rand() noexcept
{
static_assert(std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max());
static constexpr auto BITS = std::bit_width(uint64_t(std::numeric_limits<I>::max()));
static_assert(std::numeric_limits<I>::max() == std::numeric_limits<uint64_t>::max() >> (64 - BITS));
return I(Impl().template randbits<BITS>());
}
/** Generate random bytes. */
template <BasicByte B = unsigned char>
std::vector<B> randbytes(size_t len) noexcept
{
std::vector<B> ret(len);
Impl().fillrand(MakeWritableByteSpan(ret));
return ret;
}
/** Generate a random 32-bit integer. */
uint32_t rand32() noexcept { return Impl().template randbits<32>(); }
/** generate a random uint256. */
uint256 rand256() noexcept
{
uint256 ret;
Impl().fillrand(MakeWritableByteSpan(ret));
return ret;
}
/** Generate a random boolean. */
bool randbool() noexcept { return Impl().template randbits<1>(); }
/** Return the time point advanced by a uniform random duration. */
template <typename Tp>
Tp rand_uniform_delay(const Tp& time, typename Tp::duration range) noexcept
{
return time + Impl().template rand_uniform_duration<Tp>(range);
}
/** Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive). */
template <typename Chrono> requires StdChronoDuration<typename Chrono::duration>
typename Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
{
using Dur = typename Chrono::duration;
return range.count() > 0 ? /* interval [0..range) */ Dur{Impl().randrange(range.count())} :
range.count() < 0 ? /* interval (range..0] */ -Dur{Impl().randrange(-range.count())} :
/* interval [0..0] */ Dur{0};
};
/** Generate a uniform random duration in the range [0..max). Precondition: max.count() > 0 */
template <StdChronoDuration Dur>
Dur randrange(typename std::common_type_t<Dur> range) noexcept
// Having the compiler infer the template argument from the function argument
// is dangerous, because the desired return value generally has a different
// type than the function argument. So std::common_type is used to force the
// call site to specify the type of the return value.
{
return Dur{Impl().randrange(range.count())};
}
/**
* Return a duration sampled from an exponential distribution
* (https://en.wikipedia.org/wiki/Exponential_distribution). Successive events
* whose intervals are distributed according to this form a memoryless Poisson
* process. This should be used for repeated network events (e.g. sending a
* certain type of message) to minimize leaking information to observers.
*
* The probability of an event occurring before time x is 1 - e^-(x/a) where a
* is the average interval between events.
* */
std::chrono::microseconds rand_exp_duration(std::chrono::microseconds mean) noexcept
{
using namespace std::chrono_literals;
auto unscaled = MakeExponentiallyDistributed(Impl().rand64());
return std::chrono::duration_cast<std::chrono::microseconds>(unscaled * mean + 0.5us);
}
// Compatibility with the UniformRandomBitGenerator concept
typedef uint64_t result_type;
static constexpr uint64_t min() noexcept { return 0; }
static constexpr uint64_t max() noexcept { return std::numeric_limits<uint64_t>::max(); }
inline uint64_t operator()() noexcept { return Impl().rand64(); }
};
/**
* Fast randomness source. This is seeded once with secure random data, but
* is completely deterministic and does not gather more entropy after that.
*
* This class is not thread-safe.
*/
class FastRandomContext : public RandomMixin<FastRandomContext>
{
private:
bool requires_seed;
ChaCha20 rng;
void RandomSeed() noexcept;
public:
/** Construct a FastRandomContext with GetRandHash()-based entropy (or zero key if fDeterministic). */
explicit FastRandomContext(bool fDeterministic = false) noexcept;
/** Initialize with explicit seed (only for testing) */
explicit FastRandomContext(const uint256& seed) noexcept;
/** Reseed with explicit seed (only for testing). */
void Reseed(const uint256& seed) noexcept;
/** Generate a random 64-bit integer. */
uint64_t rand64() noexcept
{
if (requires_seed) RandomSeed();
std::array<std::byte, 8> buf;
rng.Keystream(buf);
return ReadLE64(UCharCast(buf.data()));
}
/** Fill a byte Span with random bytes. This overrides the RandomMixin version. */
void fillrand(Span<std::byte> output) noexcept;
};
/** xoroshiro128++ PRNG. Extremely fast, not appropriate for cryptographic purposes.
*
* Memory footprint is very small, period is 2^128 - 1.
* This class is not thread-safe.
*
* Reference implementation available at https://prng.di.unimi.it/xoroshiro128plusplus.c
* See https://prng.di.unimi.it/
*/
class InsecureRandomContext : public RandomMixin<InsecureRandomContext>
{
uint64_t m_s0;
uint64_t m_s1;
[[nodiscard]] constexpr static uint64_t SplitMix64(uint64_t& seedval) noexcept
{
uint64_t z = (seedval += 0x9e3779b97f4a7c15);
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
return z ^ (z >> 31);
}
public:
constexpr explicit InsecureRandomContext(uint64_t seedval) noexcept
: m_s0(SplitMix64(seedval)), m_s1(SplitMix64(seedval)) {}
constexpr void Reseed(uint64_t seedval) noexcept
{
FlushCache();
m_s0 = SplitMix64(seedval);
m_s1 = SplitMix64(seedval);
}
constexpr uint64_t rand64() noexcept
{
uint64_t s0 = m_s0, s1 = m_s1;
const uint64_t result = std::rotl(s0 + s1, 17) + s0;
s1 ^= s0;
m_s0 = std::rotl(s0, 49) ^ s1 ^ (s1 << 21);
m_s1 = std::rotl(s1, 28);
return result;
}
};
/* ==================== CONVENIENCE FUNCTIONS FOR COMMONLY USED RANDOMNESS ==================== */
/** Generate a random uint256. */
inline uint256 GetRandHash() noexcept
{
uint256 hash;
GetRandBytes(hash);
return hash;
}
/* ============================= MISCELLANEOUS TEST-ONLY FUNCTIONS ============================= */
/** Check that OS randomness is available and returning the requested number
* of bytes.
*/
bool Random_SanityCheck();
#endif // BITCOIN_RANDOM_H