mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-14 13:52:36 -03:00
78c312c983
This replaces the current benchmarking framework with nanobench [1], an MIT licensed single-header benchmarking library, of which I am the autor. This has in my opinion several advantages, especially on Linux: * fast: Running all benchmarks takes ~6 seconds instead of 4m13s on an Intel i7-8700 CPU @ 3.20GHz. * accurate: I ran e.g. the benchmark for SipHash_32b 10 times and calculate standard deviation / mean = coefficient of variation: * 0.57% CV for old benchmarking framework * 0.20% CV for nanobench So the benchmark results with nanobench seem to vary less than with the old framework. * It automatically determines runtime based on clock precision, no need to specify number of evaluations. * measure instructions, cycles, branches, instructions per cycle, branch misses (only Linux, when performance counters are available) * output in markdown table format. * Warn about unstable environment (frequency scaling, turbo, ...) * For better profiling, it is possible to set the environment variable NANOBENCH_ENDLESS to force endless running of a particular benchmark without the need to recompile. This makes it to e.g. run "perf top" and look at hotspots. Here is an example copy & pasted from the terminal output: | ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160` | 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1` | 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256` | 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024` | 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b` | 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512` [1] https://github.com/martinus/nanobench * Adds support for asymptotes This adds support to calculate asymptotic complexity of a benchmark. This is similar to #17375, but currently only one asymptote is supported, and I have added support in the benchmark `ComplexMemPool` as an example. Usage is e.g. like this: ``` ./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800 ``` This runs the benchmark `ComplexMemPool` several times but with different complexityN settings. The benchmark can extract that number and use it accordingly. Here, it's used for `childTxs`. The output is this: | complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark |------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:---------- | 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool` | 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool` | 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool` | 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool` | 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool` | 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool` | 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool` | coefficient | err% | complexity |--------------:|-------:|------------ | 4.78486e-07 | 4.5% | O(n^2) | 6.38557e-10 | 21.7% | O(n^3) | 3.42338e-05 | 38.0% | O(n log n) | 0.000313914 | 46.9% | O(n) | 0.0129823 | 114.4% | O(log n) | 0.0815055 | 133.8% | O(1) The best fitting curve is O(n^2), so the algorithm seems to scale quadratic with `childTxs` in the range 25 to 800.
94 lines
3.7 KiB
C++
94 lines
3.7 KiB
C++
// Copyright (c) 2011-2019 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <bench/bench.h>
|
|
#include <policy/policy.h>
|
|
#include <test/util/setup_common.h>
|
|
#include <txmempool.h>
|
|
|
|
#include <vector>
|
|
|
|
static void AddTx(const CTransactionRef& tx, CTxMemPool& pool) EXCLUSIVE_LOCKS_REQUIRED(cs_main, pool.cs)
|
|
{
|
|
int64_t nTime = 0;
|
|
unsigned int nHeight = 1;
|
|
bool spendsCoinbase = false;
|
|
unsigned int sigOpCost = 4;
|
|
LockPoints lp;
|
|
pool.addUnchecked(CTxMemPoolEntry(tx, 1000, nTime, nHeight, spendsCoinbase, sigOpCost, lp));
|
|
}
|
|
|
|
struct Available {
|
|
CTransactionRef ref;
|
|
size_t vin_left{0};
|
|
size_t tx_count;
|
|
Available(CTransactionRef& ref, size_t tx_count) : ref(ref), tx_count(tx_count){}
|
|
};
|
|
|
|
static void ComplexMemPool(benchmark::Bench& bench)
|
|
{
|
|
int childTxs = 800;
|
|
if (bench.complexityN() > 1) {
|
|
childTxs = static_cast<int>(bench.complexityN());
|
|
}
|
|
|
|
FastRandomContext det_rand{true};
|
|
std::vector<Available> available_coins;
|
|
std::vector<CTransactionRef> ordered_coins;
|
|
// Create some base transactions
|
|
size_t tx_counter = 1;
|
|
for (auto x = 0; x < 100; ++x) {
|
|
CMutableTransaction tx = CMutableTransaction();
|
|
tx.vin.resize(1);
|
|
tx.vin[0].scriptSig = CScript() << CScriptNum(tx_counter);
|
|
tx.vin[0].scriptWitness.stack.push_back(CScriptNum(x).getvch());
|
|
tx.vout.resize(det_rand.randrange(10)+2);
|
|
for (auto& out : tx.vout) {
|
|
out.scriptPubKey = CScript() << CScriptNum(tx_counter) << OP_EQUAL;
|
|
out.nValue = 10 * COIN;
|
|
}
|
|
ordered_coins.emplace_back(MakeTransactionRef(tx));
|
|
available_coins.emplace_back(ordered_coins.back(), tx_counter++);
|
|
}
|
|
for (auto x = 0; x < childTxs && !available_coins.empty(); ++x) {
|
|
CMutableTransaction tx = CMutableTransaction();
|
|
size_t n_ancestors = det_rand.randrange(10)+1;
|
|
for (size_t ancestor = 0; ancestor < n_ancestors && !available_coins.empty(); ++ancestor){
|
|
size_t idx = det_rand.randrange(available_coins.size());
|
|
Available coin = available_coins[idx];
|
|
uint256 hash = coin.ref->GetHash();
|
|
// biased towards taking just one ancestor, but maybe more
|
|
size_t n_to_take = det_rand.randrange(2) == 0 ? 1 : 1+det_rand.randrange(coin.ref->vout.size() - coin.vin_left);
|
|
for (size_t i = 0; i < n_to_take; ++i) {
|
|
tx.vin.emplace_back();
|
|
tx.vin.back().prevout = COutPoint(hash, coin.vin_left++);
|
|
tx.vin.back().scriptSig = CScript() << coin.tx_count;
|
|
tx.vin.back().scriptWitness.stack.push_back(CScriptNum(coin.tx_count).getvch());
|
|
}
|
|
if (coin.vin_left == coin.ref->vin.size()) {
|
|
coin = available_coins.back();
|
|
available_coins.pop_back();
|
|
}
|
|
tx.vout.resize(det_rand.randrange(10)+2);
|
|
for (auto& out : tx.vout) {
|
|
out.scriptPubKey = CScript() << CScriptNum(tx_counter) << OP_EQUAL;
|
|
out.nValue = 10 * COIN;
|
|
}
|
|
}
|
|
ordered_coins.emplace_back(MakeTransactionRef(tx));
|
|
available_coins.emplace_back(ordered_coins.back(), tx_counter++);
|
|
}
|
|
TestingSetup test_setup;
|
|
CTxMemPool pool;
|
|
LOCK2(cs_main, pool.cs);
|
|
bench.run([&]() NO_THREAD_SAFETY_ANALYSIS {
|
|
for (auto& tx : ordered_coins) {
|
|
AddTx(tx, pool);
|
|
}
|
|
pool.TrimToSize(pool.DynamicMemoryUsage() * 3 / 4);
|
|
pool.TrimToSize(GetVirtualTransactionSize(*ordered_coins.front()));
|
|
});
|
|
}
|
|
|
|
BENCHMARK(ComplexMemPool);
|