#!/usr/bin/env python3 # Copyright (c) 2016-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the SegWit changeover logic.""" from decimal import Decimal from test_framework.address import ( key_to_p2pkh, program_to_witness, script_to_p2sh, script_to_p2sh_p2wsh, script_to_p2wsh, ) from test_framework.blocktools import ( send_to_witness, witness_script, ) from test_framework.messages import ( COIN, COutPoint, CTransaction, CTxIn, CTxOut, tx_from_hex, ) from test_framework.script import ( CScript, OP_0, OP_1, OP_2, OP_CHECKMULTISIG, OP_CHECKSIG, OP_DROP, OP_TRUE, ) from test_framework.script_util import ( key_to_p2pkh_script, key_to_p2wpkh_script, script_to_p2sh_script, script_to_p2wsh_script, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than_or_equal, assert_is_hex_string, assert_raises_rpc_error, try_rpc, ) NODE_0 = 0 NODE_2 = 2 P2WPKH = 0 P2WSH = 1 def getutxo(txid): utxo = {} utxo["vout"] = 0 utxo["txid"] = txid return utxo def find_spendable_utxo(node, min_value): for utxo in node.listunspent(query_options={'minimumAmount': min_value}): if utxo['spendable']: return utxo raise AssertionError(f"Unspent output equal or higher than {min_value} not found") txs_mined = {} # txindex from txid to blockhash class SegWitTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 # This test tests SegWit both pre and post-activation, so use the normal BIP9 activation. self.extra_args = [ [ "-acceptnonstdtxn=1", "-rpcserialversion=0", "-testactivationheight=segwit@432", "-addresstype=legacy", ], [ "-acceptnonstdtxn=1", "-rpcserialversion=1", "-testactivationheight=segwit@432", "-addresstype=legacy", ], [ "-acceptnonstdtxn=1", "-testactivationheight=segwit@432", "-addresstype=legacy", ], ] self.rpc_timeout = 120 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): super().setup_network() self.connect_nodes(0, 2) self.sync_all() def success_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = self.generate(node, 1) assert_equal(len(node.getblock(block[0])["tx"]), 2) self.sync_blocks() def skip_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = self.generate(node, 1) assert_equal(len(node.getblock(block[0])["tx"]), 1) self.sync_blocks() def fail_accept(self, node, error_msg, txid, sign, redeem_script=""): assert_raises_rpc_error(-26, error_msg, send_to_witness, use_p2wsh=1, node=node, utxo=getutxo(txid), pubkey=self.pubkey[0], encode_p2sh=False, amount=Decimal("49.998"), sign=sign, insert_redeem_script=redeem_script) def run_test(self): self.generate(self.nodes[0], 161) # block 161 self.log.info("Verify sigops are counted in GBT with pre-BIP141 rules before the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']}) assert_equal(tmpl['sizelimit'], 1000000) assert 'weightlimit' not in tmpl assert_equal(tmpl['sigoplimit'], 20000) assert_equal(tmpl['transactions'][0]['hash'], txid) assert_equal(tmpl['transactions'][0]['sigops'], 2) assert '!segwit' not in tmpl['rules'] self.generate(self.nodes[0], 1) # block 162 balance_presetup = self.nodes[0].getbalance() self.pubkey = [] p2sh_ids = [] # p2sh_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE embedded in p2sh wit_ids = [] # wit_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE via bare witness for i in range(3): newaddress = self.nodes[i].getnewaddress() self.pubkey.append(self.nodes[i].getaddressinfo(newaddress)["pubkey"]) multiscript = CScript([OP_1, bytes.fromhex(self.pubkey[-1]), OP_1, OP_CHECKMULTISIG]) p2sh_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'p2sh-segwit')['address'] bip173_ms_addr = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]], '', 'bech32')['address'] assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript)) assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript)) p2sh_ids.append([]) wit_ids.append([]) for _ in range(2): p2sh_ids[i].append([]) wit_ids[i].append([]) for _ in range(5): for n in range(3): for v in range(2): wit_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], False, Decimal("49.999"))) p2sh_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], True, Decimal("49.999"))) self.generate(self.nodes[0], 1) # block 163 self.sync_blocks() # Make sure all nodes recognize the transactions as theirs assert_equal(self.nodes[0].getbalance(), balance_presetup - 60 * 50 + 20 * Decimal("49.999") + 50) assert_equal(self.nodes[1].getbalance(), 20 * Decimal("49.999")) assert_equal(self.nodes[2].getbalance(), 20 * Decimal("49.999")) self.generate(self.nodes[0], 260) # block 423 self.sync_blocks() self.log.info("Verify witness txs are skipped for mining before the fork") self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WPKH][0], True) # block 424 self.skip_mine(self.nodes[2], wit_ids[NODE_2][P2WSH][0], True) # block 425 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WPKH][0], True) # block 426 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][P2WSH][0], True) # block 427 self.log.info("Verify unsigned p2sh witness txs without a redeem script are invalid") self.fail_accept(self.nodes[2], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_2][P2WPKH][1], sign=False) self.fail_accept(self.nodes[2], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_2][P2WSH][1], sign=False) self.generate(self.nodes[2], 4) # blocks 428-431 self.log.info("Verify previous witness txs skipped for mining can now be mined") assert_equal(len(self.nodes[2].getrawmempool()), 4) blockhash = self.generate(self.nodes[2], 1)[0] # block 432 (first block with new rules; 432 = 144 * 3) self.sync_blocks() assert_equal(len(self.nodes[2].getrawmempool()), 0) segwit_tx_list = self.nodes[2].getblock(blockhash)["tx"] assert_equal(len(segwit_tx_list), 5) self.log.info("Verify default node can't accept txs with missing witness") # unsigned, no scriptsig self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program hash mismatch)", wit_ids[NODE_0][P2WPKH][0], sign=False) self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program was passed an empty witness)", wit_ids[NODE_0][P2WSH][0], sign=False) self.fail_accept(self.nodes[0], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_0][P2WPKH][0], sign=False) self.fail_accept(self.nodes[0], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_0][P2WSH][0], sign=False) # unsigned with redeem script self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program hash mismatch)", p2sh_ids[NODE_0][P2WPKH][0], sign=False, redeem_script=witness_script(False, self.pubkey[0])) self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program was passed an empty witness)", p2sh_ids[NODE_0][P2WSH][0], sign=False, redeem_script=witness_script(True, self.pubkey[0])) self.log.info("Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag") assert self.nodes[2].getblock(blockhash, False) != self.nodes[0].getblock(blockhash, False) assert self.nodes[1].getblock(blockhash, False) == self.nodes[2].getblock(blockhash, False) for tx_id in segwit_tx_list: tx = tx_from_hex(self.nodes[2].gettransaction(tx_id)["hex"]) assert self.nodes[2].getrawtransaction(tx_id, False, blockhash) != self.nodes[0].getrawtransaction(tx_id, False, blockhash) assert self.nodes[1].getrawtransaction(tx_id, False, blockhash) == self.nodes[2].getrawtransaction(tx_id, False, blockhash) assert self.nodes[0].getrawtransaction(tx_id, False, blockhash) != self.nodes[2].gettransaction(tx_id)["hex"] assert self.nodes[1].getrawtransaction(tx_id, False, blockhash) == self.nodes[2].gettransaction(tx_id)["hex"] assert self.nodes[0].getrawtransaction(tx_id, False, blockhash) == tx.serialize_without_witness().hex() # Coinbase contains the witness commitment nonce, check that RPC shows us coinbase_txid = self.nodes[2].getblock(blockhash)['tx'][0] coinbase_tx = self.nodes[2].gettransaction(txid=coinbase_txid, verbose=True) witnesses = coinbase_tx["decoded"]["vin"][0]["txinwitness"] assert_equal(len(witnesses), 1) assert_is_hex_string(witnesses[0]) assert_equal(witnesses[0], '00'*32) self.log.info("Verify witness txs without witness data are invalid after the fork") self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch)', wit_ids[NODE_2][P2WPKH][2], sign=False) self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness)', wit_ids[NODE_2][P2WSH][2], sign=False) self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch)', p2sh_ids[NODE_2][P2WPKH][2], sign=False, redeem_script=witness_script(False, self.pubkey[2])) self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness)', p2sh_ids[NODE_2][P2WSH][2], sign=False, redeem_script=witness_script(True, self.pubkey[2])) self.log.info("Verify default node can now use witness txs") self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WPKH][0], True) # block 432 self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WSH][0], True) # block 433 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WPKH][0], True) # block 434 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WSH][0], True) # block 435 self.log.info("Verify sigops are counted in GBT with BIP141 rules after the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']}) assert_greater_than_or_equal(tmpl['sizelimit'], 3999577) # actual maximum size is lower due to minimum mandatory non-witness data assert_equal(tmpl['weightlimit'], 4000000) assert_equal(tmpl['sigoplimit'], 80000) assert_equal(tmpl['transactions'][0]['txid'], txid) assert_equal(tmpl['transactions'][0]['sigops'], 8) assert '!segwit' in tmpl['rules'] self.generate(self.nodes[0], 1) # Mine a block to clear the gbt cache self.log.info("Non-segwit miners are able to use GBT response after activation.") # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) -> # tx2 (segwit input, paying to a non-segwit output) -> # tx3 (non-segwit input, paying to a non-segwit output). # tx1 is allowed to appear in the block, but no others. txid1 = send_to_witness(1, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[0], False, Decimal("49.996")) hex_tx = self.nodes[0].gettransaction(txid)['hex'] tx = tx_from_hex(hex_tx) assert tx.wit.is_null() # This should not be a segwit input assert txid1 in self.nodes[0].getrawmempool() tx1_hex = self.nodes[0].gettransaction(txid1)['hex'] tx1 = tx_from_hex(tx1_hex) # Check that wtxid is properly reported in mempool entry (txid1) assert_equal(int(self.nodes[0].getmempoolentry(txid1)["wtxid"], 16), tx1.calc_sha256(True)) # Check that weight and vsize are properly reported in mempool entry (txid1) assert_equal(self.nodes[0].getmempoolentry(txid1)["vsize"], tx1.get_vsize()) assert_equal(self.nodes[0].getmempoolentry(txid1)["weight"], tx1.get_weight()) # Now create tx2, which will spend from txid1. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b'')) tx.vout.append(CTxOut(int(49.99 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx2_hex = self.nodes[0].signrawtransactionwithwallet(tx.serialize().hex())['hex'] txid2 = self.nodes[0].sendrawtransaction(tx2_hex) tx = tx_from_hex(tx2_hex) assert not tx.wit.is_null() # Check that wtxid is properly reported in mempool entry (txid2) assert_equal(int(self.nodes[0].getmempoolentry(txid2)["wtxid"], 16), tx.calc_sha256(True)) # Check that weight and vsize are properly reported in mempool entry (txid2) assert_equal(self.nodes[0].getmempoolentry(txid2)["vsize"], tx.get_vsize()) assert_equal(self.nodes[0].getmempoolentry(txid2)["weight"], tx.get_weight()) # Now create tx3, which will spend from txid2 tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b"")) tx.vout.append(CTxOut(int(49.95 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) # Huge fee tx.calc_sha256() txid3 = self.nodes[0].sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0) assert tx.wit.is_null() assert txid3 in self.nodes[0].getrawmempool() # Check that getblocktemplate includes all transactions. template = self.nodes[0].getblocktemplate({"rules": ["segwit"]}) template_txids = [t['txid'] for t in template['transactions']] assert txid1 in template_txids assert txid2 in template_txids assert txid3 in template_txids # Check that wtxid is properly reported in mempool entry (txid3) assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16), tx.calc_sha256(True)) # Check that weight and vsize are properly reported in mempool entry (txid3) assert_equal(self.nodes[0].getmempoolentry(txid3)["vsize"], tx.get_vsize()) assert_equal(self.nodes[0].getmempoolentry(txid3)["weight"], tx.get_weight()) # Mine a block to clear the gbt cache again. self.generate(self.nodes[0], 1) self.log.info("Verify behaviour of importaddress and listunspent") # Some public keys to be used later pubkeys = [ "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242", # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF", # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97 "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E", # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538", # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228", # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66 "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC", # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84", # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ ] # Import a compressed key and an uncompressed key, generate some multisig addresses self.nodes[0].importprivkey("92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn") uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"] self.nodes[0].importprivkey("cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR") compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"] assert not self.nodes[0].getaddressinfo(uncompressed_spendable_address[0])['iscompressed'] assert self.nodes[0].getaddressinfo(compressed_spendable_address[0])['iscompressed'] self.nodes[0].importpubkey(pubkeys[0]) compressed_solvable_address = [key_to_p2pkh(pubkeys[0])] self.nodes[0].importpubkey(pubkeys[1]) compressed_solvable_address.append(key_to_p2pkh(pubkeys[1])) self.nodes[0].importpubkey(pubkeys[2]) uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])] spendable_anytime = [] # These outputs should be seen anytime after importprivkey and addmultisigaddress spendable_after_importaddress = [] # These outputs should be seen after importaddress solvable_after_importaddress = [] # These outputs should be seen after importaddress but not spendable unsolvable_after_importaddress = [] # These outputs should be unsolvable after importaddress solvable_anytime = [] # These outputs should be solvable after importpubkey unseen_anytime = [] # These outputs should never be seen uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address']) compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], uncompressed_solvable_address[0]])['address']) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address']) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], compressed_solvable_address[1]])['address']) # Test multisig_without_privkey # We have 2 public keys without private keys, use addmultisigaddress to add to wallet. # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address. multisig_without_privkey_address = self.nodes[0].addmultisigaddress(2, [pubkeys[3], pubkeys[4]])['address'] script = CScript([OP_2, bytes.fromhex(pubkeys[3]), bytes.fromhex(pubkeys[4]), OP_2, OP_CHECKMULTISIG]) solvable_after_importaddress.append(script_to_p2sh_script(script)) for i in compressed_spendable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # p2sh multisig with compressed keys should always be spendable spendable_anytime.extend([p2sh]) # bare multisig can be watched and signed, but is not treated as ours solvable_after_importaddress.extend([bare]) # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with compressed keys should always be spendable spendable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable spendable_anytime.extend([p2wpkh, p2sh_p2wpkh]) for i in uncompressed_spendable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # p2sh multisig with uncompressed keys should always be spendable spendable_anytime.extend([p2sh]) # bare multisig can be watched and signed, but is not treated as ours solvable_after_importaddress.extend([bare]) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with uncompressed keys should always be spendable spendable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh]) # Witness output types with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) for i in compressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): # Multisig without private is not seen after addmultisigaddress, but seen after importaddress [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) solvable_after_importaddress.extend([bare, p2sh, p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh]) # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) for i in uncompressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress solvable_after_importaddress.extend([bare, p2sh]) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with uncompressed keys should always be seen solvable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh]) # Witness output types with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) op1 = CScript([OP_1]) op0 = CScript([OP_0]) # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V unsolvable_address_key = bytes.fromhex("02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D") unsolvablep2pkh = key_to_p2pkh_script(unsolvable_address_key) unsolvablep2wshp2pkh = script_to_p2wsh_script(unsolvablep2pkh) p2shop0 = script_to_p2sh_script(op0) p2wshop1 = script_to_p2wsh_script(op1) unsolvable_after_importaddress.append(unsolvablep2pkh) unsolvable_after_importaddress.append(unsolvablep2wshp2pkh) unsolvable_after_importaddress.append(op1) # OP_1 will be imported as script unsolvable_after_importaddress.append(p2wshop1) unseen_anytime.append(op0) # OP_0 will be imported as P2SH address with no script provided unsolvable_after_importaddress.append(p2shop0) spendable_txid = [] solvable_txid = [] spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime, 1)) self.mine_and_test_listunspent(spendable_after_importaddress + solvable_after_importaddress + unseen_anytime + unsolvable_after_importaddress, 0) importlist = [] for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): bare = bytes.fromhex(v['hex']) importlist.append(bare.hex()) importlist.append(script_to_p2wsh_script(bare).hex()) else: pubkey = bytes.fromhex(v['pubkey']) p2pk = CScript([pubkey, OP_CHECKSIG]) p2pkh = key_to_p2pkh_script(pubkey) importlist.append(p2pk.hex()) importlist.append(p2pkh.hex()) importlist.append(key_to_p2wpkh_script(pubkey).hex()) importlist.append(script_to_p2wsh_script(p2pk).hex()) importlist.append(script_to_p2wsh_script(p2pkh).hex()) importlist.append(unsolvablep2pkh.hex()) importlist.append(unsolvablep2wshp2pkh.hex()) importlist.append(op1.hex()) importlist.append(p2wshop1.hex()) for i in importlist: # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC # exceptions and continue. try_rpc(-4, "The wallet already contains the private key for this address or script", self.nodes[0].importaddress, i, "", False, True) self.nodes[0].importaddress(script_to_p2sh(op0)) # import OP_0 as address only self.nodes[0].importaddress(multisig_without_privkey_address) # Test multisig_without_privkey spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1)) self.mine_and_test_listunspent(unsolvable_after_importaddress, 1) self.mine_and_test_listunspent(unseen_anytime, 0) spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1)) self.mine_and_test_listunspent(unsolvable_after_importaddress, 1) self.mine_and_test_listunspent(unseen_anytime, 0) # Repeat some tests. This time we don't add witness scripts with importaddress # Import a compressed key and an uncompressed key, generate some multisig addresses self.nodes[0].importprivkey("927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH") uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"] self.nodes[0].importprivkey("cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw") compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"] self.nodes[0].importpubkey(pubkeys[5]) compressed_solvable_address = [key_to_p2pkh(pubkeys[5])] self.nodes[0].importpubkey(pubkeys[6]) uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])] unseen_anytime = [] # These outputs should never be seen solvable_anytime = [] # These outputs should be solvable after importpubkey unseen_anytime = [] # These outputs should never be seen uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address']) compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address']) uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], uncompressed_solvable_address[0]])['address']) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address']) premature_witaddress = [] for i in compressed_spendable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) premature_witaddress.append(script_to_p2sh(p2wsh)) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2WPKH, P2SH_P2WPKH are always spendable spendable_anytime.extend([p2wpkh, p2sh_p2wpkh]) for i in uncompressed_spendable_address + uncompressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh]) for i in compressed_solvable_address: v = self.nodes[0].getaddressinfo(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) premature_witaddress.append(script_to_p2sh(p2wsh)) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable solvable_anytime.extend([p2wpkh, p2sh_p2wpkh]) self.mine_and_test_listunspent(spendable_anytime, 2) self.mine_and_test_listunspent(solvable_anytime, 1) self.mine_and_test_listunspent(unseen_anytime, 0) # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works v1_addr = program_to_witness(1, [3, 5]) v1_tx = self.nodes[0].createrawtransaction([getutxo(spendable_txid[0])], {v1_addr: 1}) v1_decoded = self.nodes[1].decoderawtransaction(v1_tx) assert_equal(v1_decoded['vout'][0]['scriptPubKey']['address'], v1_addr) assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305") # Check that spendable outputs are really spendable self.create_and_mine_tx_from_txids(spendable_txid) # import all the private keys so solvable addresses become spendable self.nodes[0].importprivkey("cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb") self.nodes[0].importprivkey("cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97") self.nodes[0].importprivkey("91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV") self.nodes[0].importprivkey("cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd") self.nodes[0].importprivkey("cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66") self.nodes[0].importprivkey("cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K") self.create_and_mine_tx_from_txids(solvable_txid) # Test that importing native P2WPKH/P2WSH scripts works for use_p2wsh in [False, True]: if use_p2wsh: scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a" transaction = "01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000" else: scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87" transaction = "01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000" self.nodes[1].importaddress(scriptPubKey, "", False) rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex'] rawtxfund = self.nodes[1].signrawtransactionwithwallet(rawtxfund)["hex"] txid = self.nodes[1].sendrawtransaction(rawtxfund) assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid) assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid) # Assert it is properly saved self.restart_node(1) assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid) assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid) def mine_and_test_listunspent(self, script_list, ismine): utxo = find_spendable_utxo(self.nodes[0], 50) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int('0x' + utxo['txid'], 0), utxo['vout']))) for i in script_list: tx.vout.append(CTxOut(10000000, i)) tx.rehash() signresults = self.nodes[0].signrawtransactionwithwallet(tx.serialize_without_witness().hex())['hex'] txid = self.nodes[0].sendrawtransaction(hexstring=signresults, maxfeerate=0) txs_mined[txid] = self.generate(self.nodes[0], 1)[0] self.sync_blocks() watchcount = 0 spendcount = 0 for i in self.nodes[0].listunspent(): if (i['txid'] == txid): watchcount += 1 if i['spendable']: spendcount += 1 if (ismine == 2): assert_equal(spendcount, len(script_list)) elif (ismine == 1): assert_equal(watchcount, len(script_list)) assert_equal(spendcount, 0) else: assert_equal(watchcount, 0) return txid def p2sh_address_to_script(self, v): bare = CScript(bytes.fromhex(v['hex'])) p2sh = CScript(bytes.fromhex(v['scriptPubKey'])) p2wsh = script_to_p2wsh_script(bare) p2sh_p2wsh = script_to_p2sh_script(p2wsh) return([bare, p2sh, p2wsh, p2sh_p2wsh]) def p2pkh_address_to_script(self, v): pubkey = bytes.fromhex(v['pubkey']) p2wpkh = key_to_p2wpkh_script(pubkey) p2sh_p2wpkh = script_to_p2sh_script(p2wpkh) p2pk = CScript([pubkey, OP_CHECKSIG]) p2pkh = CScript(bytes.fromhex(v['scriptPubKey'])) p2sh_p2pk = script_to_p2sh_script(p2pk) p2sh_p2pkh = script_to_p2sh_script(p2pkh) p2wsh_p2pk = script_to_p2wsh_script(p2pk) p2wsh_p2pkh = script_to_p2wsh_script(p2pkh) p2sh_p2wsh_p2pk = script_to_p2sh_script(p2wsh_p2pk) p2sh_p2wsh_p2pkh = script_to_p2sh_script(p2wsh_p2pkh) return [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] def create_and_mine_tx_from_txids(self, txids, success=True): tx = CTransaction() for i in txids: txraw = self.nodes[0].getrawtransaction(i, 0, txs_mined[i]) txtmp = tx_from_hex(txraw) for j in range(len(txtmp.vout)): tx.vin.append(CTxIn(COutPoint(int('0x' + i, 0), j))) tx.vout.append(CTxOut(0, CScript())) tx.rehash() signresults = self.nodes[0].signrawtransactionwithwallet(tx.serialize_without_witness().hex())['hex'] self.nodes[0].sendrawtransaction(hexstring=signresults, maxfeerate=0) self.generate(self.nodes[0], 1) self.sync_blocks() if __name__ == '__main__': SegWitTest().main()