// Copyright (c) 2016-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include RBFTransactionState IsRBFOptIn(const CTransaction& tx, const CTxMemPool& pool) { AssertLockHeld(pool.cs); CTxMemPool::setEntries ancestors; // First check the transaction itself. if (SignalsOptInRBF(tx)) { return RBFTransactionState::REPLACEABLE_BIP125; } // If this transaction is not in our mempool, then we can't be sure // we will know about all its inputs. if (!pool.exists(tx.GetHash())) { return RBFTransactionState::UNKNOWN; } // If all the inputs have nSequence >= maxint-1, it still might be // signaled for RBF if any unconfirmed parents have signaled. uint64_t noLimit = std::numeric_limits::max(); std::string dummy; CTxMemPoolEntry entry = *pool.mapTx.find(tx.GetHash()); pool.CalculateMemPoolAncestors(entry, ancestors, noLimit, noLimit, noLimit, noLimit, dummy, false); for (CTxMemPool::txiter it : ancestors) { if (SignalsOptInRBF(it->GetTx())) { return RBFTransactionState::REPLACEABLE_BIP125; } } return RBFTransactionState::FINAL; } RBFTransactionState IsRBFOptInEmptyMempool(const CTransaction& tx) { // If we don't have a local mempool we can only check the transaction itself. return SignalsOptInRBF(tx) ? RBFTransactionState::REPLACEABLE_BIP125 : RBFTransactionState::UNKNOWN; } std::optional GetEntriesForConflicts(const CTransaction& tx, CTxMemPool& pool, const CTxMemPool::setEntries& iters_conflicting, CTxMemPool::setEntries& all_conflicts) { AssertLockHeld(pool.cs); const uint256 txid = tx.GetHash(); uint64_t nConflictingCount = 0; for (const auto& mi : iters_conflicting) { nConflictingCount += mi->GetCountWithDescendants(); // This potentially overestimates the number of actual descendants // but we just want to be conservative to avoid doing too much // work. if (nConflictingCount > MAX_BIP125_REPLACEMENT_CANDIDATES) { return strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n", txid.ToString(), nConflictingCount, MAX_BIP125_REPLACEMENT_CANDIDATES); } } // If not too many to replace, then calculate the set of // transactions that would have to be evicted for (CTxMemPool::txiter it : iters_conflicting) { pool.CalculateDescendants(it, all_conflicts); } return std::nullopt; } std::optional HasNoNewUnconfirmed(const CTransaction& tx, const CTxMemPool& pool, const CTxMemPool::setEntries& iters_conflicting) { AssertLockHeld(pool.cs); std::set parents_of_conflicts; for (const auto& mi : iters_conflicting) { for (const CTxIn &txin : mi->GetTx().vin) { parents_of_conflicts.insert(txin.prevout.hash); } } for (unsigned int j = 0; j < tx.vin.size(); j++) { // We don't want to accept replacements that require low // feerate junk to be mined first. Ideally we'd keep track of // the ancestor feerates and make the decision based on that, // but for now requiring all new inputs to be confirmed works. // // Note that if you relax this to make RBF a little more useful, // this may break the CalculateMempoolAncestors RBF relaxation, // above. See the comment above the first CalculateMempoolAncestors // call for more info. if (!parents_of_conflicts.count(tx.vin[j].prevout.hash)) { // Rather than check the UTXO set - potentially expensive - // it's cheaper to just check if the new input refers to a // tx that's in the mempool. if (pool.exists(tx.vin[j].prevout.hash)) { return strprintf("replacement %s adds unconfirmed input, idx %d", tx.GetHash().ToString(), j); } } } return std::nullopt; } std::optional EntriesAndTxidsDisjoint(const CTxMemPool::setEntries& ancestors, const std::set& direct_conflicts, const uint256& txid) { for (CTxMemPool::txiter ancestorIt : ancestors) { const uint256 &hashAncestor = ancestorIt->GetTx().GetHash(); if (direct_conflicts.count(hashAncestor)) { return strprintf("%s spends conflicting transaction %s", txid.ToString(), hashAncestor.ToString()); } } return std::nullopt; } std::optional PaysMoreThanConflicts(const CTxMemPool::setEntries& iters_conflicting, CFeeRate replacement_feerate, const uint256& txid) { for (const auto& mi : iters_conflicting) { // Don't allow the replacement to reduce the feerate of the // mempool. // // We usually don't want to accept replacements with lower // feerates than what they replaced as that would lower the // feerate of the next block. Requiring that the feerate always // be increased is also an easy-to-reason about way to prevent // DoS attacks via replacements. // // We only consider the feerates of transactions being directly // replaced, not their indirect descendants. While that does // mean high feerate children are ignored when deciding whether // or not to replace, we do require the replacement to pay more // overall fees too, mitigating most cases. CFeeRate original_feerate(mi->GetModifiedFee(), mi->GetTxSize()); if (replacement_feerate <= original_feerate) { return strprintf("rejecting replacement %s; new feerate %s <= old feerate %s", txid.ToString(), replacement_feerate.ToString(), original_feerate.ToString()); } } return std::nullopt; } std::optional PaysForRBF(CAmount original_fees, CAmount replacement_fees, size_t replacement_vsize, const uint256& txid) { // The replacement must pay greater fees than the transactions it // replaces - if we did the bandwidth used by those conflicting // transactions would not be paid for. if (replacement_fees < original_fees) { return strprintf("rejecting replacement %s, less fees than conflicting txs; %s < %s", txid.ToString(), FormatMoney(replacement_fees), FormatMoney(original_fees)); } // Finally in addition to paying more fees than the conflicts the // new transaction must pay for its own bandwidth. CAmount additional_fees = replacement_fees - original_fees; if (additional_fees < ::incrementalRelayFee.GetFee(replacement_vsize)) { return strprintf("rejecting replacement %s, not enough additional fees to relay; %s < %s", txid.ToString(), FormatMoney(additional_fees), FormatMoney(::incrementalRelayFee.GetFee(replacement_vsize))); } return std::nullopt; }