// Copyright (c) 2012-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "serialize.h" #include "streams.h" #include "hash.h" #include "test/test_bitcoin.h" #include <stdint.h> #include <boost/test/unit_test.hpp> using namespace std; BOOST_FIXTURE_TEST_SUITE(serialize_tests, BasicTestingSetup) class CSerializeMethodsTestSingle { protected: int intval; bool boolval; std::string stringval; const char* charstrval; CTransactionRef txval; public: CSerializeMethodsTestSingle() = default; CSerializeMethodsTestSingle(int intvalin, bool boolvalin, std::string stringvalin, const char* charstrvalin, CTransaction txvalin) : intval(intvalin), boolval(boolvalin), stringval(std::move(stringvalin)), charstrval(charstrvalin), txval(MakeTransactionRef(txvalin)){} ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action) { READWRITE(intval); READWRITE(boolval); READWRITE(stringval); READWRITE(FLATDATA(charstrval)); READWRITE(txval); } bool operator==(const CSerializeMethodsTestSingle& rhs) { return intval == rhs.intval && \ boolval == rhs.boolval && \ stringval == rhs.stringval && \ strcmp(charstrval, rhs.charstrval) == 0 && \ *txval == *rhs.txval; } }; class CSerializeMethodsTestMany : public CSerializeMethodsTestSingle { public: using CSerializeMethodsTestSingle::CSerializeMethodsTestSingle; ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action) { READWRITEMANY(intval, boolval, stringval, FLATDATA(charstrval), txval); } }; BOOST_AUTO_TEST_CASE(sizes) { BOOST_CHECK_EQUAL(sizeof(char), GetSerializeSize(char(0), 0)); BOOST_CHECK_EQUAL(sizeof(int8_t), GetSerializeSize(int8_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint8_t), GetSerializeSize(uint8_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(int16_t), GetSerializeSize(int16_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint16_t), GetSerializeSize(uint16_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(int32_t), GetSerializeSize(int32_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint32_t), GetSerializeSize(uint32_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(int64_t), GetSerializeSize(int64_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint64_t), GetSerializeSize(uint64_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(float), GetSerializeSize(float(0), 0)); BOOST_CHECK_EQUAL(sizeof(double), GetSerializeSize(double(0), 0)); // Bool is serialized as char BOOST_CHECK_EQUAL(sizeof(char), GetSerializeSize(bool(0), 0)); // Sanity-check GetSerializeSize and c++ type matching BOOST_CHECK_EQUAL(GetSerializeSize(char(0), 0), 1); BOOST_CHECK_EQUAL(GetSerializeSize(int8_t(0), 0), 1); BOOST_CHECK_EQUAL(GetSerializeSize(uint8_t(0), 0), 1); BOOST_CHECK_EQUAL(GetSerializeSize(int16_t(0), 0), 2); BOOST_CHECK_EQUAL(GetSerializeSize(uint16_t(0), 0), 2); BOOST_CHECK_EQUAL(GetSerializeSize(int32_t(0), 0), 4); BOOST_CHECK_EQUAL(GetSerializeSize(uint32_t(0), 0), 4); BOOST_CHECK_EQUAL(GetSerializeSize(int64_t(0), 0), 8); BOOST_CHECK_EQUAL(GetSerializeSize(uint64_t(0), 0), 8); BOOST_CHECK_EQUAL(GetSerializeSize(float(0), 0), 4); BOOST_CHECK_EQUAL(GetSerializeSize(double(0), 0), 8); BOOST_CHECK_EQUAL(GetSerializeSize(bool(0), 0), 1); } BOOST_AUTO_TEST_CASE(floats_conversion) { // Choose values that map unambigiously to binary floating point to avoid // rounding issues at the compiler side. BOOST_CHECK_EQUAL(ser_uint32_to_float(0x00000000), 0.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x3f000000), 0.5F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x3f800000), 1.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x40000000), 2.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x40800000), 4.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x44444444), 785.066650390625F); BOOST_CHECK_EQUAL(ser_float_to_uint32(0.0F), 0x00000000); BOOST_CHECK_EQUAL(ser_float_to_uint32(0.5F), 0x3f000000); BOOST_CHECK_EQUAL(ser_float_to_uint32(1.0F), 0x3f800000); BOOST_CHECK_EQUAL(ser_float_to_uint32(2.0F), 0x40000000); BOOST_CHECK_EQUAL(ser_float_to_uint32(4.0F), 0x40800000); BOOST_CHECK_EQUAL(ser_float_to_uint32(785.066650390625F), 0x44444444); } BOOST_AUTO_TEST_CASE(doubles_conversion) { // Choose values that map unambigiously to binary floating point to avoid // rounding issues at the compiler side. BOOST_CHECK_EQUAL(ser_uint64_to_double(0x0000000000000000ULL), 0.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x3fe0000000000000ULL), 0.5); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x3ff0000000000000ULL), 1.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4000000000000000ULL), 2.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4010000000000000ULL), 4.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4088888880000000ULL), 785.066650390625); BOOST_CHECK_EQUAL(ser_double_to_uint64(0.0), 0x0000000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(0.5), 0x3fe0000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(1.0), 0x3ff0000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(2.0), 0x4000000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(4.0), 0x4010000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(785.066650390625), 0x4088888880000000ULL); } /* Python code to generate the below hashes: def reversed_hex(x): return binascii.hexlify(''.join(reversed(x))) def dsha256(x): return hashlib.sha256(hashlib.sha256(x).digest()).digest() reversed_hex(dsha256(''.join(struct.pack('<f', x) for x in range(0,1000)))) == '8e8b4cf3e4df8b332057e3e23af42ebc663b61e0495d5e7e32d85099d7f3fe0c' reversed_hex(dsha256(''.join(struct.pack('<d', x) for x in range(0,1000)))) == '43d0c82591953c4eafe114590d392676a01585d25b25d433557f0d7878b23f96' */ BOOST_AUTO_TEST_CASE(floats) { CDataStream ss(SER_DISK, 0); // encode for (int i = 0; i < 1000; i++) { ss << float(i); } BOOST_CHECK(Hash(ss.begin(), ss.end()) == uint256S("8e8b4cf3e4df8b332057e3e23af42ebc663b61e0495d5e7e32d85099d7f3fe0c")); // decode for (int i = 0; i < 1000; i++) { float j; ss >> j; BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(doubles) { CDataStream ss(SER_DISK, 0); // encode for (int i = 0; i < 1000; i++) { ss << double(i); } BOOST_CHECK(Hash(ss.begin(), ss.end()) == uint256S("43d0c82591953c4eafe114590d392676a01585d25b25d433557f0d7878b23f96")); // decode for (int i = 0; i < 1000; i++) { double j; ss >> j; BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(varints) { // encode CDataStream ss(SER_DISK, 0); CDataStream::size_type size = 0; for (int i = 0; i < 100000; i++) { ss << VARINT(i); size += ::GetSerializeSize(VARINT(i), 0, 0); BOOST_CHECK(size == ss.size()); } for (uint64_t i = 0; i < 100000000000ULL; i += 999999937) { ss << VARINT(i); size += ::GetSerializeSize(VARINT(i), 0, 0); BOOST_CHECK(size == ss.size()); } // decode for (int i = 0; i < 100000; i++) { int j = -1; ss >> VARINT(j); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } for (uint64_t i = 0; i < 100000000000ULL; i += 999999937) { uint64_t j = -1; ss >> VARINT(j); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(varints_bitpatterns) { CDataStream ss(SER_DISK, 0); ss << VARINT(0); BOOST_CHECK_EQUAL(HexStr(ss), "00"); ss.clear(); ss << VARINT(0x7f); BOOST_CHECK_EQUAL(HexStr(ss), "7f"); ss.clear(); ss << VARINT((int8_t)0x7f); BOOST_CHECK_EQUAL(HexStr(ss), "7f"); ss.clear(); ss << VARINT(0x80); BOOST_CHECK_EQUAL(HexStr(ss), "8000"); ss.clear(); ss << VARINT((uint8_t)0x80); BOOST_CHECK_EQUAL(HexStr(ss), "8000"); ss.clear(); ss << VARINT(0x1234); BOOST_CHECK_EQUAL(HexStr(ss), "a334"); ss.clear(); ss << VARINT((int16_t)0x1234); BOOST_CHECK_EQUAL(HexStr(ss), "a334"); ss.clear(); ss << VARINT(0xffff); BOOST_CHECK_EQUAL(HexStr(ss), "82fe7f"); ss.clear(); ss << VARINT((uint16_t)0xffff); BOOST_CHECK_EQUAL(HexStr(ss), "82fe7f"); ss.clear(); ss << VARINT(0x123456); BOOST_CHECK_EQUAL(HexStr(ss), "c7e756"); ss.clear(); ss << VARINT((int32_t)0x123456); BOOST_CHECK_EQUAL(HexStr(ss), "c7e756"); ss.clear(); ss << VARINT(0x80123456U); BOOST_CHECK_EQUAL(HexStr(ss), "86ffc7e756"); ss.clear(); ss << VARINT((uint32_t)0x80123456U); BOOST_CHECK_EQUAL(HexStr(ss), "86ffc7e756"); ss.clear(); ss << VARINT(0xffffffff); BOOST_CHECK_EQUAL(HexStr(ss), "8efefefe7f"); ss.clear(); ss << VARINT(0x7fffffffffffffffLL); BOOST_CHECK_EQUAL(HexStr(ss), "fefefefefefefefe7f"); ss.clear(); ss << VARINT(0xffffffffffffffffULL); BOOST_CHECK_EQUAL(HexStr(ss), "80fefefefefefefefe7f"); ss.clear(); } BOOST_AUTO_TEST_CASE(compactsize) { CDataStream ss(SER_DISK, 0); vector<char>::size_type i, j; for (i = 1; i <= MAX_SIZE; i *= 2) { WriteCompactSize(ss, i-1); WriteCompactSize(ss, i); } for (i = 1; i <= MAX_SIZE; i *= 2) { j = ReadCompactSize(ss); BOOST_CHECK_MESSAGE((i-1) == j, "decoded:" << j << " expected:" << (i-1)); j = ReadCompactSize(ss); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } static bool isCanonicalException(const std::ios_base::failure& ex) { std::ios_base::failure expectedException("non-canonical ReadCompactSize()"); // The string returned by what() can be different for different platforms. // Instead of directly comparing the ex.what() with an expected string, // create an instance of exception to see if ex.what() matches // the expected explanatory string returned by the exception instance. return strcmp(expectedException.what(), ex.what()) == 0; } BOOST_AUTO_TEST_CASE(noncanonical) { // Write some non-canonical CompactSize encodings, and // make sure an exception is thrown when read back. CDataStream ss(SER_DISK, 0); vector<char>::size_type n; // zero encoded with three bytes: ss.write("\xfd\x00\x00", 3); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xfc encoded with three bytes: ss.write("\xfd\xfc\x00", 3); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xfd encoded with three bytes is OK: ss.write("\xfd\xfd\x00", 3); n = ReadCompactSize(ss); BOOST_CHECK(n == 0xfd); // zero encoded with five bytes: ss.write("\xfe\x00\x00\x00\x00", 5); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xffff encoded with five bytes: ss.write("\xfe\xff\xff\x00\x00", 5); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // zero encoded with nine bytes: ss.write("\xff\x00\x00\x00\x00\x00\x00\x00\x00", 9); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0x01ffffff encoded with nine bytes: ss.write("\xff\xff\xff\xff\x01\x00\x00\x00\x00", 9); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); } BOOST_AUTO_TEST_CASE(insert_delete) { // Test inserting/deleting bytes. CDataStream ss(SER_DISK, 0); BOOST_CHECK_EQUAL(ss.size(), 0); ss.write("\x00\x01\x02\xff", 4); BOOST_CHECK_EQUAL(ss.size(), 4); char c = (char)11; // Inserting at beginning/end/middle: ss.insert(ss.begin(), c); BOOST_CHECK_EQUAL(ss.size(), 5); BOOST_CHECK_EQUAL(ss[0], c); BOOST_CHECK_EQUAL(ss[1], 0); ss.insert(ss.end(), c); BOOST_CHECK_EQUAL(ss.size(), 6); BOOST_CHECK_EQUAL(ss[4], (char)0xff); BOOST_CHECK_EQUAL(ss[5], c); ss.insert(ss.begin()+2, c); BOOST_CHECK_EQUAL(ss.size(), 7); BOOST_CHECK_EQUAL(ss[2], c); // Delete at beginning/end/middle ss.erase(ss.begin()); BOOST_CHECK_EQUAL(ss.size(), 6); BOOST_CHECK_EQUAL(ss[0], 0); ss.erase(ss.begin()+ss.size()-1); BOOST_CHECK_EQUAL(ss.size(), 5); BOOST_CHECK_EQUAL(ss[4], (char)0xff); ss.erase(ss.begin()+1); BOOST_CHECK_EQUAL(ss.size(), 4); BOOST_CHECK_EQUAL(ss[0], 0); BOOST_CHECK_EQUAL(ss[1], 1); BOOST_CHECK_EQUAL(ss[2], 2); BOOST_CHECK_EQUAL(ss[3], (char)0xff); // Make sure GetAndClear does the right thing: CSerializeData d; ss.GetAndClear(d); BOOST_CHECK_EQUAL(ss.size(), 0); } BOOST_AUTO_TEST_CASE(class_methods) { int intval(100); bool boolval(true); std::string stringval("testing"); const char* charstrval("testing charstr"); CMutableTransaction txval; CSerializeMethodsTestSingle methodtest1(intval, boolval, stringval, charstrval, txval); CSerializeMethodsTestMany methodtest2(intval, boolval, stringval, charstrval, txval); CSerializeMethodsTestSingle methodtest3; CSerializeMethodsTestMany methodtest4; CDataStream ss(SER_DISK, PROTOCOL_VERSION); BOOST_CHECK(methodtest1 == methodtest2); ss << methodtest1; ss >> methodtest4; ss << methodtest2; ss >> methodtest3; BOOST_CHECK(methodtest1 == methodtest2); BOOST_CHECK(methodtest2 == methodtest3); BOOST_CHECK(methodtest3 == methodtest4); CDataStream ss2(SER_DISK, PROTOCOL_VERSION, intval, boolval, stringval, FLATDATA(charstrval), txval); ss2 >> methodtest3; BOOST_CHECK(methodtest3 == methodtest4); } BOOST_AUTO_TEST_SUITE_END()