// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NET_H #define BITCOIN_NET_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class AddrMan; class BanMan; class CNode; class CScheduler; struct bilingual_str; /** Default for -whitelistrelay. */ static const bool DEFAULT_WHITELISTRELAY = true; /** Default for -whitelistforcerelay. */ static const bool DEFAULT_WHITELISTFORCERELAY = false; /** Time after which to disconnect, after waiting for a ping response (or inactivity). */ static constexpr std::chrono::minutes TIMEOUT_INTERVAL{20}; /** Run the feeler connection loop once every 2 minutes. **/ static constexpr auto FEELER_INTERVAL = 2min; /** Run the extra block-relay-only connection loop once every 5 minutes. **/ static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 5min; /** Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable). */ static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 4 * 1000 * 1000; /** Maximum length of the user agent string in `version` message */ static const unsigned int MAX_SUBVERSION_LENGTH = 256; /** Maximum number of automatic outgoing nodes over which we'll relay everything (blocks, tx, addrs, etc) */ static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8; /** Maximum number of addnode outgoing nodes */ static const int MAX_ADDNODE_CONNECTIONS = 8; /** Maximum number of block-relay-only outgoing connections */ static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2; /** Maximum number of feeler connections */ static const int MAX_FEELER_CONNECTIONS = 1; /** -listen default */ static const bool DEFAULT_LISTEN = true; /** The maximum number of peer connections to maintain. */ static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125; /** The default for -maxuploadtarget. 0 = Unlimited */ static const std::string DEFAULT_MAX_UPLOAD_TARGET{"0M"}; /** Default for blocks only*/ static const bool DEFAULT_BLOCKSONLY = false; /** -peertimeout default */ static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60; /** Number of file descriptors required for message capture **/ static const int NUM_FDS_MESSAGE_CAPTURE = 1; static constexpr bool DEFAULT_FORCEDNSSEED{false}; static constexpr bool DEFAULT_DNSSEED{true}; static constexpr bool DEFAULT_FIXEDSEEDS{true}; static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000; static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000; typedef int64_t NodeId; struct AddedNodeInfo { std::string strAddedNode; CService resolvedAddress; bool fConnected; bool fInbound; }; class CNodeStats; class CClientUIInterface; struct CSerializedNetMsg { CSerializedNetMsg() = default; CSerializedNetMsg(CSerializedNetMsg&&) = default; CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default; // No copying, only moves. CSerializedNetMsg(const CSerializedNetMsg& msg) = delete; CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete; std::vector data; std::string m_type; }; /** Different types of connections to a peer. This enum encapsulates the * information we have available at the time of opening or accepting the * connection. Aside from INBOUND, all types are initiated by us. * * If adding or removing types, please update CONNECTION_TYPE_DOC in * src/rpc/net.cpp and src/qt/rpcconsole.cpp, as well as the descriptions in * src/qt/guiutil.cpp and src/bitcoin-cli.cpp::NetinfoRequestHandler. */ enum class ConnectionType { /** * Inbound connections are those initiated by a peer. This is the only * property we know at the time of connection, until P2P messages are * exchanged. */ INBOUND, /** * These are the default connections that we use to connect with the * network. There is no restriction on what is relayed; by default we relay * blocks, addresses & transactions. We automatically attempt to open * MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan. */ OUTBOUND_FULL_RELAY, /** * We open manual connections to addresses that users explicitly requested * via the addnode RPC or the -addnode/-connect configuration options. Even if a * manual connection is misbehaving, we do not automatically disconnect or * add it to our discouragement filter. */ MANUAL, /** * Feeler connections are short-lived connections made to check that a node * is alive. They can be useful for: * - test-before-evict: if one of the peers is considered for eviction from * our AddrMan because another peer is mapped to the same slot in the tried table, * evict only if this longer-known peer is offline. * - move node addresses from New to Tried table, so that we have more * connectable addresses in our AddrMan. * Note that in the literature ("Eclipse Attacks on Bitcoin’s Peer-to-Peer Network") * only the latter feature is referred to as "feeler connections", * although in our codebase feeler connections encompass test-before-evict as well. * We make these connections approximately every FEELER_INTERVAL: * first we resolve previously found collisions if they exist (test-before-evict), * otherwise we connect to a node from the new table. */ FEELER, /** * We use block-relay-only connections to help prevent against partition * attacks. By not relaying transactions or addresses, these connections * are harder to detect by a third party, thus helping obfuscate the * network topology. We automatically attempt to open * MAX_BLOCK_RELAY_ONLY_ANCHORS using addresses from our anchors.dat. Then * addresses from our AddrMan if MAX_BLOCK_RELAY_ONLY_CONNECTIONS * isn't reached yet. */ BLOCK_RELAY, /** * AddrFetch connections are short lived connections used to solicit * addresses from peers. These are initiated to addresses submitted via the * -seednode command line argument, or under certain conditions when the * AddrMan is empty. */ ADDR_FETCH, }; /** Convert ConnectionType enum to a string value */ std::string ConnectionTypeAsString(ConnectionType conn_type); void Discover(); uint16_t GetListenPort(); enum { LOCAL_NONE, // unknown LOCAL_IF, // address a local interface listens on LOCAL_BIND, // address explicit bound to LOCAL_MAPPED, // address reported by UPnP or NAT-PMP LOCAL_MANUAL, // address explicitly specified (-externalip=) LOCAL_MAX }; bool IsPeerAddrLocalGood(CNode *pnode); /** Returns a local address that we should advertise to this peer */ std::optional GetLocalAddrForPeer(CNode *pnode); /** * Mark a network as reachable or unreachable (no automatic connects to it) * @note Networks are reachable by default */ void SetReachable(enum Network net, bool reachable); /** @returns true if the network is reachable, false otherwise */ bool IsReachable(enum Network net); /** @returns true if the address is in a reachable network, false otherwise */ bool IsReachable(const CNetAddr& addr); bool AddLocal(const CService& addr, int nScore = LOCAL_NONE); bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE); void RemoveLocal(const CService& addr); bool SeenLocal(const CService& addr); bool IsLocal(const CService& addr); bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr); CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices); extern bool fDiscover; extern bool fListen; /** Subversion as sent to the P2P network in `version` messages */ extern std::string strSubVersion; struct LocalServiceInfo { int nScore; uint16_t nPort; }; extern RecursiveMutex cs_mapLocalHost; extern std::map mapLocalHost GUARDED_BY(cs_mapLocalHost); extern const std::string NET_MESSAGE_COMMAND_OTHER; typedef std::map mapMsgCmdSize; //command, total bytes class CNodeStats { public: NodeId nodeid; ServiceFlags nServices; bool fRelayTxes; std::chrono::seconds m_last_send; std::chrono::seconds m_last_recv; int64_t nLastTXTime; int64_t nLastBlockTime; int64_t nTimeConnected; int64_t nTimeOffset; std::string m_addr_name; int nVersion; std::string cleanSubVer; bool fInbound; bool m_bip152_highbandwidth_to; bool m_bip152_highbandwidth_from; int m_starting_height; uint64_t nSendBytes; mapMsgCmdSize mapSendBytesPerMsgCmd; uint64_t nRecvBytes; mapMsgCmdSize mapRecvBytesPerMsgCmd; NetPermissionFlags m_permissionFlags; std::chrono::microseconds m_last_ping_time; std::chrono::microseconds m_min_ping_time; CAmount minFeeFilter; // Our address, as reported by the peer std::string addrLocal; // Address of this peer CAddress addr; // Bind address of our side of the connection CAddress addrBind; // Network the peer connected through Network m_network; uint32_t m_mapped_as; ConnectionType m_conn_type; }; /** Transport protocol agnostic message container. * Ideally it should only contain receive time, payload, * command and size. */ class CNetMessage { public: CDataStream m_recv; //!< received message data std::chrono::microseconds m_time{0}; //!< time of message receipt uint32_t m_message_size{0}; //!< size of the payload uint32_t m_raw_message_size{0}; //!< used wire size of the message (including header/checksum) std::string m_command; CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {} void SetVersion(int nVersionIn) { m_recv.SetVersion(nVersionIn); } }; /** The TransportDeserializer takes care of holding and deserializing the * network receive buffer. It can deserialize the network buffer into a * transport protocol agnostic CNetMessage (command & payload) */ class TransportDeserializer { public: // returns true if the current deserialization is complete virtual bool Complete() const = 0; // set the serialization context version virtual void SetVersion(int version) = 0; /** read and deserialize data, advances msg_bytes data pointer */ virtual int Read(Span& msg_bytes) = 0; // decomposes a message from the context virtual CNetMessage GetMessage(std::chrono::microseconds time, bool& reject_message) = 0; virtual ~TransportDeserializer() {} }; class V1TransportDeserializer final : public TransportDeserializer { private: const CChainParams& m_chain_params; const NodeId m_node_id; // Only for logging mutable CHash256 hasher; mutable uint256 data_hash; bool in_data; // parsing header (false) or data (true) CDataStream hdrbuf; // partially received header CMessageHeader hdr; // complete header CDataStream vRecv; // received message data unsigned int nHdrPos; unsigned int nDataPos; const uint256& GetMessageHash() const; int readHeader(Span msg_bytes); int readData(Span msg_bytes); void Reset() { vRecv.clear(); hdrbuf.clear(); hdrbuf.resize(24); in_data = false; nHdrPos = 0; nDataPos = 0; data_hash.SetNull(); hasher.Reset(); } public: V1TransportDeserializer(const CChainParams& chain_params, const NodeId node_id, int nTypeIn, int nVersionIn) : m_chain_params(chain_params), m_node_id(node_id), hdrbuf(nTypeIn, nVersionIn), vRecv(nTypeIn, nVersionIn) { Reset(); } bool Complete() const override { if (!in_data) return false; return (hdr.nMessageSize == nDataPos); } void SetVersion(int nVersionIn) override { hdrbuf.SetVersion(nVersionIn); vRecv.SetVersion(nVersionIn); } int Read(Span& msg_bytes) override { int ret = in_data ? readData(msg_bytes) : readHeader(msg_bytes); if (ret < 0) { Reset(); } else { msg_bytes = msg_bytes.subspan(ret); } return ret; } CNetMessage GetMessage(std::chrono::microseconds time, bool& reject_message) override; }; /** The TransportSerializer prepares messages for the network transport */ class TransportSerializer { public: // prepare message for transport (header construction, error-correction computation, payload encryption, etc.) virtual void prepareForTransport(CSerializedNetMsg& msg, std::vector& header) = 0; virtual ~TransportSerializer() {} }; class V1TransportSerializer : public TransportSerializer { public: void prepareForTransport(CSerializedNetMsg& msg, std::vector& header) override; }; /** Information about a peer */ class CNode { friend class CConnman; friend struct ConnmanTestMsg; public: std::unique_ptr m_deserializer; std::unique_ptr m_serializer; NetPermissionFlags m_permissionFlags{NetPermissionFlags::None}; std::atomic nServices{NODE_NONE}; SOCKET hSocket GUARDED_BY(cs_hSocket); /** Total size of all vSendMsg entries */ size_t nSendSize GUARDED_BY(cs_vSend){0}; /** Offset inside the first vSendMsg already sent */ size_t nSendOffset GUARDED_BY(cs_vSend){0}; uint64_t nSendBytes GUARDED_BY(cs_vSend){0}; std::deque> vSendMsg GUARDED_BY(cs_vSend); Mutex cs_vSend; Mutex cs_hSocket; Mutex cs_vRecv; RecursiveMutex cs_vProcessMsg; std::list vProcessMsg GUARDED_BY(cs_vProcessMsg); size_t nProcessQueueSize{0}; RecursiveMutex cs_sendProcessing; uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0}; std::atomic m_last_send{0s}; std::atomic m_last_recv{0s}; //! Unix epoch time at peer connection, in seconds. const int64_t nTimeConnected; std::atomic nTimeOffset{0}; // Address of this peer const CAddress addr; // Bind address of our side of the connection const CAddress addrBind; const std::string m_addr_name; //! Whether this peer is an inbound onion, i.e. connected via our Tor onion service. const bool m_inbound_onion; std::atomic nVersion{0}; RecursiveMutex cs_SubVer; /** * cleanSubVer is a sanitized string of the user agent byte array we read * from the wire. This cleaned string can safely be logged or displayed. */ std::string cleanSubVer GUARDED_BY(cs_SubVer){}; bool m_prefer_evict{false}; // This peer is preferred for eviction. bool HasPermission(NetPermissionFlags permission) const { return NetPermissions::HasFlag(m_permissionFlags, permission); } bool fClient{false}; // set by version message bool m_limited_node{false}; //after BIP159, set by version message /** fSuccessfullyConnected is set to true on receiving VERACK from the peer. */ std::atomic_bool fSuccessfullyConnected{false}; // Setting fDisconnect to true will cause the node to be disconnected the // next time DisconnectNodes() runs std::atomic_bool fDisconnect{false}; CSemaphoreGrant grantOutbound; std::atomic nRefCount{0}; const uint64_t nKeyedNetGroup; std::atomic_bool fPauseRecv{false}; std::atomic_bool fPauseSend{false}; bool IsOutboundOrBlockRelayConn() const { switch (m_conn_type) { case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::BLOCK_RELAY: return true; case ConnectionType::INBOUND: case ConnectionType::MANUAL: case ConnectionType::ADDR_FETCH: case ConnectionType::FEELER: return false; } // no default case, so the compiler can warn about missing cases assert(false); } bool IsFullOutboundConn() const { return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY; } bool IsManualConn() const { return m_conn_type == ConnectionType::MANUAL; } bool IsBlockOnlyConn() const { return m_conn_type == ConnectionType::BLOCK_RELAY; } bool IsFeelerConn() const { return m_conn_type == ConnectionType::FEELER; } bool IsAddrFetchConn() const { return m_conn_type == ConnectionType::ADDR_FETCH; } bool IsInboundConn() const { return m_conn_type == ConnectionType::INBOUND; } bool ExpectServicesFromConn() const { switch (m_conn_type) { case ConnectionType::INBOUND: case ConnectionType::MANUAL: case ConnectionType::FEELER: return false; case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::BLOCK_RELAY: case ConnectionType::ADDR_FETCH: return true; } // no default case, so the compiler can warn about missing cases assert(false); } /** * Get network the peer connected through. * * Returns Network::NET_ONION for *inbound* onion connections, * and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly * because it doesn't detect the former, and it's not the responsibility of * the CNetAddr class to know the actual network a peer is connected through. * * @return network the peer connected through. */ Network ConnectedThroughNetwork() const; // We selected peer as (compact blocks) high-bandwidth peer (BIP152) std::atomic m_bip152_highbandwidth_to{false}; // Peer selected us as (compact blocks) high-bandwidth peer (BIP152) std::atomic m_bip152_highbandwidth_from{false}; struct TxRelay { mutable RecursiveMutex cs_filter; // We use fRelayTxes for two purposes - // a) it allows us to not relay tx invs before receiving the peer's version message // b) the peer may tell us in its version message that we should not relay tx invs // unless it loads a bloom filter. bool fRelayTxes GUARDED_BY(cs_filter){false}; std::unique_ptr pfilter PT_GUARDED_BY(cs_filter) GUARDED_BY(cs_filter){nullptr}; mutable RecursiveMutex cs_tx_inventory; CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){50000, 0.000001}; // Set of transaction ids we still have to announce. // They are sorted by the mempool before relay, so the order is not important. std::set setInventoryTxToSend; // Used for BIP35 mempool sending bool fSendMempool GUARDED_BY(cs_tx_inventory){false}; // Last time a "MEMPOOL" request was serviced. std::atomic m_last_mempool_req{0s}; std::chrono::microseconds nNextInvSend{0}; /** Minimum fee rate with which to filter inv's to this node */ std::atomic minFeeFilter{0}; CAmount lastSentFeeFilter{0}; std::chrono::microseconds m_next_send_feefilter{0}; }; // m_tx_relay == nullptr if we're not relaying transactions with this peer std::unique_ptr m_tx_relay; /** UNIX epoch time of the last block received from this peer that we had * not yet seen (e.g. not already received from another peer), that passed * preliminary validity checks and was saved to disk, even if we don't * connect the block or it eventually fails connection. Used as an inbound * peer eviction criterium in CConnman::AttemptToEvictConnection. */ std::atomic nLastBlockTime{0}; /** UNIX epoch time of the last transaction received from this peer that we * had not yet seen (e.g. not already received from another peer) and that * was accepted into our mempool. Used as an inbound peer eviction criterium * in CConnman::AttemptToEvictConnection. */ std::atomic nLastTXTime{0}; /** Last measured round-trip time. Used only for RPC/GUI stats/debugging.*/ std::atomic m_last_ping_time{0us}; /** Lowest measured round-trip time. Used as an inbound peer eviction * criterium in CConnman::AttemptToEvictConnection. */ std::atomic m_min_ping_time{std::chrono::microseconds::max()}; CNode(NodeId id, ServiceFlags nLocalServicesIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress& addrBindIn, const std::string& addrNameIn, ConnectionType conn_type_in, bool inbound_onion); ~CNode(); CNode(const CNode&) = delete; CNode& operator=(const CNode&) = delete; NodeId GetId() const { return id; } uint64_t GetLocalNonce() const { return nLocalHostNonce; } int GetRefCount() const { assert(nRefCount >= 0); return nRefCount; } /** * Receive bytes from the buffer and deserialize them into messages. * * @param[in] msg_bytes The raw data * @param[out] complete Set True if at least one message has been * deserialized and is ready to be processed * @return True if the peer should stay connected, * False if the peer should be disconnected from. */ bool ReceiveMsgBytes(Span msg_bytes, bool& complete); void SetCommonVersion(int greatest_common_version) { Assume(m_greatest_common_version == INIT_PROTO_VERSION); m_greatest_common_version = greatest_common_version; } int GetCommonVersion() const { return m_greatest_common_version; } CService GetAddrLocal() const; //! May not be called more than once void SetAddrLocal(const CService& addrLocalIn); CNode* AddRef() { nRefCount++; return this; } void Release() { nRefCount--; } void AddKnownTx(const uint256& hash) { if (m_tx_relay != nullptr) { LOCK(m_tx_relay->cs_tx_inventory); m_tx_relay->filterInventoryKnown.insert(hash); } } void PushTxInventory(const uint256& hash) { if (m_tx_relay == nullptr) return; LOCK(m_tx_relay->cs_tx_inventory); if (!m_tx_relay->filterInventoryKnown.contains(hash)) { m_tx_relay->setInventoryTxToSend.insert(hash); } } void CloseSocketDisconnect(); void CopyStats(CNodeStats& stats); ServiceFlags GetLocalServices() const { return nLocalServices; } std::string ConnectionTypeAsString() const { return ::ConnectionTypeAsString(m_conn_type); } /** A ping-pong round trip has completed successfully. Update latest and minimum ping times. */ void PongReceived(std::chrono::microseconds ping_time) { m_last_ping_time = ping_time; m_min_ping_time = std::min(m_min_ping_time.load(), ping_time); } private: const NodeId id; const uint64_t nLocalHostNonce; const ConnectionType m_conn_type; std::atomic m_greatest_common_version{INIT_PROTO_VERSION}; //! Services offered to this peer. //! //! This is supplied by the parent CConnman during peer connection //! (CConnman::ConnectNode()) from its attribute of the same name. //! //! This is const because there is no protocol defined for renegotiating //! services initially offered to a peer. The set of local services we //! offer should not change after initialization. //! //! An interesting example of this is NODE_NETWORK and initial block //! download: a node which starts up from scratch doesn't have any blocks //! to serve, but still advertises NODE_NETWORK because it will eventually //! fulfill this role after IBD completes. P2P code is written in such a //! way that it can gracefully handle peers who don't make good on their //! service advertisements. const ServiceFlags nLocalServices; std::list vRecvMsg; // Used only by SocketHandler thread // Our address, as reported by the peer CService addrLocal GUARDED_BY(cs_addrLocal); mutable RecursiveMutex cs_addrLocal; mapMsgCmdSize mapSendBytesPerMsgCmd GUARDED_BY(cs_vSend); mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv); }; /** * Interface for message handling */ class NetEventsInterface { public: /** Initialize a peer (setup state, queue any initial messages) */ virtual void InitializeNode(CNode* pnode) = 0; /** Handle removal of a peer (clear state) */ virtual void FinalizeNode(const CNode& node) = 0; /** * Process protocol messages received from a given node * * @param[in] pnode The node which we have received messages from. * @param[in] interrupt Interrupt condition for processing threads * @return True if there is more work to be done */ virtual bool ProcessMessages(CNode* pnode, std::atomic& interrupt) = 0; /** * Send queued protocol messages to a given node. * * @param[in] pnode The node which we are sending messages to. * @return True if there is more work to be done */ virtual bool SendMessages(CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_sendProcessing) = 0; protected: /** * Protected destructor so that instances can only be deleted by derived classes. * If that restriction is no longer desired, this should be made public and virtual. */ ~NetEventsInterface() = default; }; class CConnman { public: struct Options { ServiceFlags nLocalServices = NODE_NONE; int nMaxConnections = 0; int m_max_outbound_full_relay = 0; int m_max_outbound_block_relay = 0; int nMaxAddnode = 0; int nMaxFeeler = 0; CClientUIInterface* uiInterface = nullptr; NetEventsInterface* m_msgproc = nullptr; BanMan* m_banman = nullptr; unsigned int nSendBufferMaxSize = 0; unsigned int nReceiveFloodSize = 0; uint64_t nMaxOutboundLimit = 0; int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT; std::vector vSeedNodes; std::vector vWhitelistedRange; std::vector vWhiteBinds; std::vector vBinds; std::vector onion_binds; /// True if the user did not specify -bind= or -whitebind= and thus /// we should bind on `0.0.0.0` (IPv4) and `::` (IPv6). bool bind_on_any; bool m_use_addrman_outgoing = true; std::vector m_specified_outgoing; std::vector m_added_nodes; bool m_i2p_accept_incoming; }; void Init(const Options& connOptions) { nLocalServices = connOptions.nLocalServices; nMaxConnections = connOptions.nMaxConnections; m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections); m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay; m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing; nMaxAddnode = connOptions.nMaxAddnode; nMaxFeeler = connOptions.nMaxFeeler; m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler; m_client_interface = connOptions.uiInterface; m_banman = connOptions.m_banman; m_msgproc = connOptions.m_msgproc; nSendBufferMaxSize = connOptions.nSendBufferMaxSize; nReceiveFloodSize = connOptions.nReceiveFloodSize; m_peer_connect_timeout = std::chrono::seconds{connOptions.m_peer_connect_timeout}; { LOCK(cs_totalBytesSent); nMaxOutboundLimit = connOptions.nMaxOutboundLimit; } vWhitelistedRange = connOptions.vWhitelistedRange; { LOCK(m_added_nodes_mutex); m_added_nodes = connOptions.m_added_nodes; } m_onion_binds = connOptions.onion_binds; } CConnman(uint64_t seed0, uint64_t seed1, AddrMan& addrman, bool network_active = true); ~CConnman(); bool Start(CScheduler& scheduler, const Options& options); void StopThreads(); void StopNodes(); void Stop() { StopThreads(); StopNodes(); }; void Interrupt(); bool GetNetworkActive() const { return fNetworkActive; }; bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; }; void SetNetworkActive(bool active); void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant* grantOutbound, const char* strDest, ConnectionType conn_type); bool CheckIncomingNonce(uint64_t nonce); bool ForNode(NodeId id, std::function func); void PushMessage(CNode* pnode, CSerializedNetMsg&& msg); using NodeFn = std::function; void ForEachNode(const NodeFn& func) { LOCK(m_nodes_mutex); for (auto&& node : m_nodes) { if (NodeFullyConnected(node)) func(node); } }; void ForEachNode(const NodeFn& func) const { LOCK(m_nodes_mutex); for (auto&& node : m_nodes) { if (NodeFullyConnected(node)) func(node); } }; // Addrman functions /** * Return all or many randomly selected addresses, optionally by network. * * @param[in] max_addresses Maximum number of addresses to return (0 = all). * @param[in] max_pct Maximum percentage of addresses to return (0 = all). * @param[in] network Select only addresses of this network (nullopt = all). */ std::vector GetAddresses(size_t max_addresses, size_t max_pct, std::optional network) const; /** * Cache is used to minimize topology leaks, so it should * be used for all non-trusted calls, for example, p2p. * A non-malicious call (from RPC or a peer with addr permission) should * call the function without a parameter to avoid using the cache. */ std::vector GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct); // This allows temporarily exceeding m_max_outbound_full_relay, with the goal of finding // a peer that is better than all our current peers. void SetTryNewOutboundPeer(bool flag); bool GetTryNewOutboundPeer() const; void StartExtraBlockRelayPeers() { LogPrint(BCLog::NET, "net: enabling extra block-relay-only peers\n"); m_start_extra_block_relay_peers = true; } // Return the number of outbound peers we have in excess of our target (eg, // if we previously called SetTryNewOutboundPeer(true), and have since set // to false, we may have extra peers that we wish to disconnect). This may // return a value less than (num_outbound_connections - num_outbound_slots) // in cases where some outbound connections are not yet fully connected, or // not yet fully disconnected. int GetExtraFullOutboundCount() const; // Count the number of block-relay-only peers we have over our limit. int GetExtraBlockRelayCount() const; bool AddNode(const std::string& node); bool RemoveAddedNode(const std::string& node); std::vector GetAddedNodeInfo() const; /** * Attempts to open a connection. Currently only used from tests. * * @param[in] address Address of node to try connecting to * @param[in] conn_type ConnectionType::OUTBOUND or ConnectionType::BLOCK_RELAY * or ConnectionType::ADDR_FETCH * @return bool Returns false if there are no available * slots for this connection: * - conn_type not a supported ConnectionType * - Max total outbound connection capacity filled * - Max connection capacity for type is filled */ bool AddConnection(const std::string& address, ConnectionType conn_type); size_t GetNodeCount(ConnectionDirection) const; void GetNodeStats(std::vector& vstats) const; bool DisconnectNode(const std::string& node); bool DisconnectNode(const CSubNet& subnet); bool DisconnectNode(const CNetAddr& addr); bool DisconnectNode(NodeId id); //! Used to convey which local services we are offering peers during node //! connection. //! //! The data returned by this is used in CNode construction, //! which is used to advertise which services we are offering //! that peer during `net_processing.cpp:PushNodeVersion()`. ServiceFlags GetLocalServices() const; uint64_t GetMaxOutboundTarget() const; std::chrono::seconds GetMaxOutboundTimeframe() const; //! check if the outbound target is reached //! if param historicalBlockServingLimit is set true, the function will //! response true if the limit for serving historical blocks has been reached bool OutboundTargetReached(bool historicalBlockServingLimit) const; //! response the bytes left in the current max outbound cycle //! in case of no limit, it will always response 0 uint64_t GetOutboundTargetBytesLeft() const; //! returns the time left in the current max outbound cycle //! in case of no limit, it will always return 0 std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const; uint64_t GetTotalBytesRecv() const; uint64_t GetTotalBytesSent() const; /** Get a unique deterministic randomizer. */ CSipHasher GetDeterministicRandomizer(uint64_t id) const; unsigned int GetReceiveFloodSize() const; void WakeMessageHandler(); /** Attempts to obfuscate tx time through exponentially distributed emitting. Works assuming that a single interval is used. Variable intervals will result in privacy decrease. */ std::chrono::microseconds PoissonNextSendInbound(std::chrono::microseconds now, std::chrono::seconds average_interval); /** Return true if we should disconnect the peer for failing an inactivity check. */ bool ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const; private: struct ListenSocket { public: SOCKET socket; inline void AddSocketPermissionFlags(NetPermissionFlags& flags) const { NetPermissions::AddFlag(flags, m_permissions); } ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {} private: NetPermissionFlags m_permissions; }; bool BindListenPort(const CService& bindAddr, bilingual_str& strError, NetPermissionFlags permissions); bool Bind(const CService& addr, unsigned int flags, NetPermissionFlags permissions); bool InitBinds(const Options& options); void ThreadOpenAddedConnections(); void AddAddrFetch(const std::string& strDest); void ProcessAddrFetch(); void ThreadOpenConnections(std::vector connect); void ThreadMessageHandler(); void ThreadI2PAcceptIncoming(); void AcceptConnection(const ListenSocket& hListenSocket); /** * Create a `CNode` object from a socket that has just been accepted and add the node to * the `m_nodes` member. * @param[in] hSocket Connected socket to communicate with the peer. * @param[in] permissionFlags The peer's permissions. * @param[in] addr_bind The address and port at our side of the connection. * @param[in] addr The address and port at the peer's side of the connection. */ void CreateNodeFromAcceptedSocket(SOCKET hSocket, NetPermissionFlags permissionFlags, const CAddress& addr_bind, const CAddress& addr); void DisconnectNodes(); void NotifyNumConnectionsChanged(); /** Return true if the peer is inactive and should be disconnected. */ bool InactivityCheck(const CNode& node) const; /** * Generate a collection of sockets to check for IO readiness. * @param[in] nodes Select from these nodes' sockets. * @param[out] recv_set Sockets to check for read readiness. * @param[out] send_set Sockets to check for write readiness. * @param[out] error_set Sockets to check for errors. * @return true if at least one socket is to be checked (the returned set is not empty) */ bool GenerateSelectSet(const std::vector& nodes, std::set& recv_set, std::set& send_set, std::set& error_set); /** * Check which sockets are ready for IO. * @param[in] nodes Select from these nodes' sockets. * @param[out] recv_set Sockets which are ready for read. * @param[out] send_set Sockets which are ready for write. * @param[out] error_set Sockets which have errors. * This calls `GenerateSelectSet()` to gather a list of sockets to check. */ void SocketEvents(const std::vector& nodes, std::set& recv_set, std::set& send_set, std::set& error_set); /** * Check connected and listening sockets for IO readiness and process them accordingly. */ void SocketHandler(); /** * Do the read/write for connected sockets that are ready for IO. * @param[in] nodes Nodes to process. The socket of each node is checked against * `recv_set`, `send_set` and `error_set`. * @param[in] recv_set Sockets that are ready for read. * @param[in] send_set Sockets that are ready for send. * @param[in] error_set Sockets that have an exceptional condition (error). */ void SocketHandlerConnected(const std::vector& nodes, const std::set& recv_set, const std::set& send_set, const std::set& error_set); /** * Accept incoming connections, one from each read-ready listening socket. * @param[in] recv_set Sockets that are ready for read. */ void SocketHandlerListening(const std::set& recv_set); void ThreadSocketHandler(); void ThreadDNSAddressSeed(); uint64_t CalculateKeyedNetGroup(const CAddress& ad) const; CNode* FindNode(const CNetAddr& ip); CNode* FindNode(const CSubNet& subNet); CNode* FindNode(const std::string& addrName); CNode* FindNode(const CService& addr); /** * Determine whether we're already connected to a given address, in order to * avoid initiating duplicate connections. */ bool AlreadyConnectedToAddress(const CAddress& addr); bool AttemptToEvictConnection(); CNode* ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type); void AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const; void DeleteNode(CNode* pnode); NodeId GetNewNodeId(); size_t SocketSendData(CNode& node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend); void DumpAddresses(); // Network stats void RecordBytesRecv(uint64_t bytes); void RecordBytesSent(uint64_t bytes); /** * Return vector of current BLOCK_RELAY peers. */ std::vector GetCurrentBlockRelayOnlyConns() const; // Whether the node should be passed out in ForEach* callbacks static bool NodeFullyConnected(const CNode* pnode); // Network usage totals mutable RecursiveMutex cs_totalBytesSent; std::atomic nTotalBytesRecv{0}; uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent) {0}; // outbound limit & stats uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent) {0}; std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent) {0}; uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent); // P2P timeout in seconds std::chrono::seconds m_peer_connect_timeout; // Whitelisted ranges. Any node connecting from these is automatically // whitelisted (as well as those connecting to whitelisted binds). std::vector vWhitelistedRange; unsigned int nSendBufferMaxSize{0}; unsigned int nReceiveFloodSize{0}; std::vector vhListenSocket; std::atomic fNetworkActive{true}; bool fAddressesInitialized{false}; AddrMan& addrman; std::deque m_addr_fetches GUARDED_BY(m_addr_fetches_mutex); Mutex m_addr_fetches_mutex; std::vector m_added_nodes GUARDED_BY(m_added_nodes_mutex); mutable Mutex m_added_nodes_mutex; std::vector m_nodes GUARDED_BY(m_nodes_mutex); std::list m_nodes_disconnected; mutable RecursiveMutex m_nodes_mutex; std::atomic nLastNodeId{0}; unsigned int nPrevNodeCount{0}; /** * Cache responses to addr requests to minimize privacy leak. * Attack example: scraping addrs in real-time may allow an attacker * to infer new connections of the victim by detecting new records * with fresh timestamps (per self-announcement). */ struct CachedAddrResponse { std::vector m_addrs_response_cache; std::chrono::microseconds m_cache_entry_expiration{0}; }; /** * Addr responses stored in different caches * per (network, local socket) prevent cross-network node identification. * If a node for example is multi-homed under Tor and IPv6, * a single cache (or no cache at all) would let an attacker * to easily detect that it is the same node by comparing responses. * Indexing by local socket prevents leakage when a node has multiple * listening addresses on the same network. * * The used memory equals to 1000 CAddress records (or around 40 bytes) per * distinct Network (up to 5) we have/had an inbound peer from, * resulting in at most ~196 KB. Every separate local socket may * add up to ~196 KB extra. */ std::map m_addr_response_caches; /** * Services this instance offers. * * This data is replicated in each CNode instance we create during peer * connection (in ConnectNode()) under a member also called * nLocalServices. * * This data is not marked const, but after being set it should not * change. See the note in CNode::nLocalServices documentation. * * \sa CNode::nLocalServices */ ServiceFlags nLocalServices; std::unique_ptr semOutbound; std::unique_ptr semAddnode; int nMaxConnections; // How many full-relay (tx, block, addr) outbound peers we want int m_max_outbound_full_relay; // How many block-relay only outbound peers we want // We do not relay tx or addr messages with these peers int m_max_outbound_block_relay; int nMaxAddnode; int nMaxFeeler; int m_max_outbound; bool m_use_addrman_outgoing; CClientUIInterface* m_client_interface; NetEventsInterface* m_msgproc; /** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */ BanMan* m_banman; /** * Addresses that were saved during the previous clean shutdown. We'll * attempt to make block-relay-only connections to them. */ std::vector m_anchors; /** SipHasher seeds for deterministic randomness */ const uint64_t nSeed0, nSeed1; /** flag for waking the message processor. */ bool fMsgProcWake GUARDED_BY(mutexMsgProc); std::condition_variable condMsgProc; Mutex mutexMsgProc; std::atomic flagInterruptMsgProc{false}; /** * This is signaled when network activity should cease. * A pointer to it is saved in `m_i2p_sam_session`, so make sure that * the lifetime of `interruptNet` is not shorter than * the lifetime of `m_i2p_sam_session`. */ CThreadInterrupt interruptNet; /** * I2P SAM session. * Used to accept incoming and make outgoing I2P connections. */ std::unique_ptr m_i2p_sam_session; std::thread threadDNSAddressSeed; std::thread threadSocketHandler; std::thread threadOpenAddedConnections; std::thread threadOpenConnections; std::thread threadMessageHandler; std::thread threadI2PAcceptIncoming; /** flag for deciding to connect to an extra outbound peer, * in excess of m_max_outbound_full_relay * This takes the place of a feeler connection */ std::atomic_bool m_try_another_outbound_peer; /** flag for initiating extra block-relay-only peer connections. * this should only be enabled after initial chain sync has occurred, * as these connections are intended to be short-lived and low-bandwidth. */ std::atomic_bool m_start_extra_block_relay_peers{false}; std::atomic m_next_send_inv_to_incoming{0us}; /** * A vector of -bind=
:=onion arguments each of which is * an address and port that are designated for incoming Tor connections. */ std::vector m_onion_binds; /** * RAII helper to atomically create a copy of `m_nodes` and add a reference * to each of the nodes. The nodes are released when this object is destroyed. */ class NodesSnapshot { public: explicit NodesSnapshot(const CConnman& connman, bool shuffle) { { LOCK(connman.m_nodes_mutex); m_nodes_copy = connman.m_nodes; for (auto& node : m_nodes_copy) { node->AddRef(); } } if (shuffle) { Shuffle(m_nodes_copy.begin(), m_nodes_copy.end(), FastRandomContext{}); } } ~NodesSnapshot() { for (auto& node : m_nodes_copy) { node->Release(); } } const std::vector& Nodes() const { return m_nodes_copy; } private: std::vector m_nodes_copy; }; friend struct CConnmanTest; friend struct ConnmanTestMsg; }; /** Return a timestamp in the future (in microseconds) for exponentially distributed events. */ std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval); /** Dump binary message to file, with timestamp */ void CaptureMessage(const CAddress& addr, const std::string& msg_type, const Span& data, bool is_incoming); struct NodeEvictionCandidate { NodeId id; int64_t nTimeConnected; std::chrono::microseconds m_min_ping_time; int64_t nLastBlockTime; int64_t nLastTXTime; bool fRelevantServices; bool fRelayTxes; bool fBloomFilter; uint64_t nKeyedNetGroup; bool prefer_evict; bool m_is_local; Network m_network; }; /** * Select an inbound peer to evict after filtering out (protecting) peers having * distinct, difficult-to-forge characteristics. The protection logic picks out * fixed numbers of desirable peers per various criteria, followed by (mostly) * ratios of desirable or disadvantaged peers. If any eviction candidates * remain, the selection logic chooses a peer to evict. */ [[nodiscard]] std::optional SelectNodeToEvict(std::vector&& vEvictionCandidates); /** Protect desirable or disadvantaged inbound peers from eviction by ratio. * * This function protects half of the peers which have been connected the * longest, to replicate the non-eviction implicit behavior and preclude attacks * that start later. * * Half of these protected spots (1/4 of the total) are reserved for the * following categories of peers, sorted by longest uptime, even if they're not * longest uptime overall: * * - onion peers connected via our tor control service * * - localhost peers, as manually configured hidden services not using * `-bind=addr[:port]=onion` will not be detected as inbound onion connections * * - I2P peers * * This helps protect these privacy network peers, which tend to be otherwise * disadvantaged under our eviction criteria for their higher min ping times * relative to IPv4/IPv6 peers, and favorise the diversity of peer connections. */ void ProtectEvictionCandidatesByRatio(std::vector& vEvictionCandidates); #endif // BITCOIN_NET_H