// Copyright (c) 2020-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace i2p { /** * Swap Standard Base64 <-> I2P Base64. * Standard Base64 uses `+` and `/` as last two characters of its alphabet. * I2P Base64 uses `-` and `~` respectively. * So it is easy to detect in which one is the input and convert to the other. * @param[in] from Input to convert. * @return converted `from` */ static std::string SwapBase64(const std::string& from) { std::string to; to.resize(from.size()); for (size_t i = 0; i < from.size(); ++i) { switch (from[i]) { case '-': to[i] = '+'; break; case '~': to[i] = '/'; break; case '+': to[i] = '-'; break; case '/': to[i] = '~'; break; default: to[i] = from[i]; break; } } return to; } /** * Decode an I2P-style Base64 string. * @param[in] i2p_b64 I2P-style Base64 string. * @return decoded `i2p_b64` * @throw std::runtime_error if decoding fails */ static Binary DecodeI2PBase64(const std::string& i2p_b64) { const std::string& std_b64 = SwapBase64(i2p_b64); auto decoded = DecodeBase64(std_b64); if (!decoded) { throw std::runtime_error(strprintf("Cannot decode Base64: \"%s\"", i2p_b64)); } return std::move(*decoded); } /** * Derive the .b32.i2p address of an I2P destination (binary). * @param[in] dest I2P destination. * @return the address that corresponds to `dest` * @throw std::runtime_error if conversion fails */ static CNetAddr DestBinToAddr(const Binary& dest) { CSHA256 hasher; hasher.Write(dest.data(), dest.size()); unsigned char hash[CSHA256::OUTPUT_SIZE]; hasher.Finalize(hash); CNetAddr addr; const std::string addr_str = EncodeBase32(hash, false) + ".b32.i2p"; if (!addr.SetSpecial(addr_str)) { throw std::runtime_error(strprintf("Cannot parse I2P address: \"%s\"", addr_str)); } return addr; } /** * Derive the .b32.i2p address of an I2P destination (I2P-style Base64). * @param[in] dest I2P destination. * @return the address that corresponds to `dest` * @throw std::runtime_error if conversion fails */ static CNetAddr DestB64ToAddr(const std::string& dest) { const Binary& decoded = DecodeI2PBase64(dest); return DestBinToAddr(decoded); } namespace sam { Session::Session(const fs::path& private_key_file, const CService& control_host, CThreadInterrupt* interrupt) : m_private_key_file{private_key_file}, m_control_host{control_host}, m_interrupt{interrupt}, m_control_sock{std::make_unique(INVALID_SOCKET)}, m_transient{false} { } Session::Session(const CService& control_host, CThreadInterrupt* interrupt) : m_control_host{control_host}, m_interrupt{interrupt}, m_control_sock{std::make_unique(INVALID_SOCKET)}, m_transient{true} { } Session::~Session() { LOCK(m_mutex); Disconnect(); } bool Session::Listen(Connection& conn) { try { LOCK(m_mutex); CreateIfNotCreatedAlready(); conn.me = m_my_addr; conn.sock = StreamAccept(); return true; } catch (const std::runtime_error& e) { Log("Error listening: %s", e.what()); CheckControlSock(); } return false; } bool Session::Accept(Connection& conn) { try { while (!*m_interrupt) { Sock::Event occurred; if (!conn.sock->Wait(MAX_WAIT_FOR_IO, Sock::RECV, &occurred)) { throw std::runtime_error("wait on socket failed"); } if (occurred == 0) { // Timeout, no incoming connections or errors within MAX_WAIT_FOR_IO. continue; } const std::string& peer_dest = conn.sock->RecvUntilTerminator('\n', MAX_WAIT_FOR_IO, *m_interrupt, MAX_MSG_SIZE); conn.peer = CService(DestB64ToAddr(peer_dest), I2P_SAM31_PORT); return true; } } catch (const std::runtime_error& e) { Log("Error accepting: %s", e.what()); CheckControlSock(); } return false; } bool Session::Connect(const CService& to, Connection& conn, bool& proxy_error) { // Refuse connecting to arbitrary ports. We don't specify any destination port to the SAM proxy // when connecting (SAM 3.1 does not use ports) and it forces/defaults it to I2P_SAM31_PORT. if (to.GetPort() != I2P_SAM31_PORT) { proxy_error = false; return false; } proxy_error = true; std::string session_id; std::unique_ptr sock; conn.peer = to; try { { LOCK(m_mutex); CreateIfNotCreatedAlready(); session_id = m_session_id; conn.me = m_my_addr; sock = Hello(); } const Reply& lookup_reply = SendRequestAndGetReply(*sock, strprintf("NAMING LOOKUP NAME=%s", to.ToStringAddr())); const std::string& dest = lookup_reply.Get("VALUE"); const Reply& connect_reply = SendRequestAndGetReply( *sock, strprintf("STREAM CONNECT ID=%s DESTINATION=%s SILENT=false", session_id, dest), false); const std::string& result = connect_reply.Get("RESULT"); if (result == "OK") { conn.sock = std::move(sock); return true; } if (result == "INVALID_ID") { LOCK(m_mutex); Disconnect(); throw std::runtime_error("Invalid session id"); } if (result == "CANT_REACH_PEER" || result == "TIMEOUT") { proxy_error = false; } throw std::runtime_error(strprintf("\"%s\"", connect_reply.full)); } catch (const std::runtime_error& e) { Log("Error connecting to %s: %s", to.ToString(), e.what()); CheckControlSock(); return false; } } // Private methods std::string Session::Reply::Get(const std::string& key) const { const auto& pos = keys.find(key); if (pos == keys.end() || !pos->second.has_value()) { throw std::runtime_error( strprintf("Missing %s= in the reply to \"%s\": \"%s\"", key, request, full)); } return pos->second.value(); } template void Session::Log(const std::string& fmt, const Args&... args) const { LogPrint(BCLog::I2P, "%s\n", tfm::format(fmt, args...)); } Session::Reply Session::SendRequestAndGetReply(const Sock& sock, const std::string& request, bool check_result_ok) const { sock.SendComplete(request + "\n", MAX_WAIT_FOR_IO, *m_interrupt); Reply reply; // Don't log the full "SESSION CREATE ..." because it contains our private key. reply.request = request.substr(0, 14) == "SESSION CREATE" ? "SESSION CREATE ..." : request; // It could take a few minutes for the I2P router to reply as it is querying the I2P network // (when doing name lookup, for example). Notice: `RecvUntilTerminator()` is checking // `m_interrupt` more often, so we would not be stuck here for long if `m_interrupt` is // signaled. static constexpr auto recv_timeout = 3min; reply.full = sock.RecvUntilTerminator('\n', recv_timeout, *m_interrupt, MAX_MSG_SIZE); for (const auto& kv : spanparsing::Split(reply.full, ' ')) { const auto& pos = std::find(kv.begin(), kv.end(), '='); if (pos != kv.end()) { reply.keys.emplace(std::string{kv.begin(), pos}, std::string{pos + 1, kv.end()}); } else { reply.keys.emplace(std::string{kv.begin(), kv.end()}, std::nullopt); } } if (check_result_ok && reply.Get("RESULT") != "OK") { throw std::runtime_error( strprintf("Unexpected reply to \"%s\": \"%s\"", request, reply.full)); } return reply; } std::unique_ptr Session::Hello() const { auto sock = CreateSock(m_control_host); if (!sock) { throw std::runtime_error("Cannot create socket"); } if (!ConnectSocketDirectly(m_control_host, *sock, nConnectTimeout, true)) { throw std::runtime_error(strprintf("Cannot connect to %s", m_control_host.ToString())); } SendRequestAndGetReply(*sock, "HELLO VERSION MIN=3.1 MAX=3.1"); return sock; } void Session::CheckControlSock() { LOCK(m_mutex); std::string errmsg; if (!m_control_sock->IsConnected(errmsg)) { Log("Control socket error: %s", errmsg); Disconnect(); } } void Session::DestGenerate(const Sock& sock) { // https://geti2p.net/spec/common-structures#key-certificates // "7" or "EdDSA_SHA512_Ed25519" - "Recent Router Identities and Destinations". // Use "7" because i2pd <2.24.0 does not recognize the textual form. // If SIGNATURE_TYPE is not specified, then the default one is DSA_SHA1. const Reply& reply = SendRequestAndGetReply(sock, "DEST GENERATE SIGNATURE_TYPE=7", false); m_private_key = DecodeI2PBase64(reply.Get("PRIV")); } void Session::GenerateAndSavePrivateKey(const Sock& sock) { DestGenerate(sock); // umask is set to 077 in init.cpp, which is ok (unless -sysperms is given) if (!WriteBinaryFile(m_private_key_file, std::string(m_private_key.begin(), m_private_key.end()))) { throw std::runtime_error( strprintf("Cannot save I2P private key to %s", fs::quoted(fs::PathToString(m_private_key_file)))); } } Binary Session::MyDestination() const { // From https://geti2p.net/spec/common-structures#destination: // "They are 387 bytes plus the certificate length specified at bytes 385-386, which may be // non-zero" static constexpr size_t DEST_LEN_BASE = 387; static constexpr size_t CERT_LEN_POS = 385; uint16_t cert_len; memcpy(&cert_len, &m_private_key.at(CERT_LEN_POS), sizeof(cert_len)); cert_len = be16toh(cert_len); const size_t dest_len = DEST_LEN_BASE + cert_len; return Binary{m_private_key.begin(), m_private_key.begin() + dest_len}; } void Session::CreateIfNotCreatedAlready() { std::string errmsg; if (m_control_sock->IsConnected(errmsg)) { return; } const auto session_type = m_transient ? "transient" : "persistent"; const auto session_id = GetRandHash().GetHex().substr(0, 10); // full is overkill, too verbose in the logs Log("Creating %s SAM session %s with %s", session_type, session_id, m_control_host.ToString()); auto sock = Hello(); if (m_transient) { // The destination (private key) is generated upon session creation and returned // in the reply in DESTINATION=. const Reply& reply = SendRequestAndGetReply( *sock, strprintf("SESSION CREATE STYLE=STREAM ID=%s DESTINATION=TRANSIENT SIGNATURE_TYPE=7", session_id)); m_private_key = DecodeI2PBase64(reply.Get("DESTINATION")); } else { // Read our persistent destination (private key) from disk or generate // one and save it to disk. Then use it when creating the session. const auto& [read_ok, data] = ReadBinaryFile(m_private_key_file); if (read_ok) { m_private_key.assign(data.begin(), data.end()); } else { GenerateAndSavePrivateKey(*sock); } const std::string& private_key_b64 = SwapBase64(EncodeBase64(m_private_key)); SendRequestAndGetReply(*sock, strprintf("SESSION CREATE STYLE=STREAM ID=%s DESTINATION=%s", session_id, private_key_b64)); } m_my_addr = CService(DestBinToAddr(MyDestination()), I2P_SAM31_PORT); m_session_id = session_id; m_control_sock = std::move(sock); Log("%s SAM session %s created, my address=%s", Capitalize(session_type), m_session_id, m_my_addr.ToString()); } std::unique_ptr Session::StreamAccept() { auto sock = Hello(); const Reply& reply = SendRequestAndGetReply( *sock, strprintf("STREAM ACCEPT ID=%s SILENT=false", m_session_id), false); const std::string& result = reply.Get("RESULT"); if (result == "OK") { return sock; } if (result == "INVALID_ID") { // If our session id is invalid, then force session re-creation on next usage. Disconnect(); } throw std::runtime_error(strprintf("\"%s\"", reply.full)); } void Session::Disconnect() { if (m_control_sock->Get() != INVALID_SOCKET) { if (m_session_id.empty()) { Log("Destroying incomplete SAM session"); } else { Log("Destroying SAM session %s", m_session_id); } } m_control_sock = std::make_unique(INVALID_SOCKET); m_session_id.clear(); } } // namespace sam } // namespace i2p