#!/usr/bin/env python3 # Copyright (c) 2014-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the rawtransaction RPCs. Test the following RPCs: - getrawtransaction - createrawtransaction - signrawtransactionwithwallet - sendrawtransaction - decoderawtransaction """ from collections import OrderedDict from decimal import Decimal from test_framework.blocktools import COINBASE_MATURITY from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, CTransaction, tx_from_hex, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) from test_framework.wallet import ( getnewdestination, MiniWallet, ) TXID = "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000" class multidict(dict): """Dictionary that allows duplicate keys. Constructed with a list of (key, value) tuples. When dumped by the json module, will output invalid json with repeated keys, eg: >>> json.dumps(multidict([(1,2),(1,2)]) '{"1": 2, "1": 2}' Used to test calls to rpc methods with repeated keys in the json object.""" def __init__(self, x): dict.__init__(self, x) self.x = x def items(self): return self.x class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [ ["-txindex"], ["-txindex"], [], ] # whitelist all peers to speed up tx relay / mempool sync for args in self.extra_args: args.append("-whitelist=noban@127.0.0.1") self.requires_wallet = self.is_specified_wallet_compiled() self.supports_cli = False def setup_network(self): super().setup_network() self.connect_nodes(0, 2) def run_test(self): self.wallet = MiniWallet(self.nodes[0]) self.log.info("Prepare some coins for multiple *rawtransaction commands") self.generate(self.wallet, 10) self.generate(self.nodes[0], COINBASE_MATURITY + 1) self.getrawtransaction_tests() self.createrawtransaction_tests() self.sendrawtransaction_tests() self.sendrawtransaction_testmempoolaccept_tests() self.decoderawtransaction_tests() self.transaction_version_number_tests() if self.requires_wallet and not self.options.descriptors: self.raw_multisig_transaction_legacy_tests() def getrawtransaction_tests(self): tx = self.wallet.send_self_transfer(from_node=self.nodes[0]) self.generate(self.nodes[0], 1) txId = tx['txid'] err_msg = ( "No such mempool transaction. Use -txindex or provide a block hash to enable" " blockchain transaction queries. Use gettransaction for wallet transactions." ) for n in [0, 2]: self.log.info(f"Test getrawtransaction {'with' if n == 0 else 'without'} -txindex") if n == 0: # With -txindex. # 1. valid parameters - only supply txid assert_equal(self.nodes[n].getrawtransaction(txId), tx['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal(self.nodes[n].getrawtransaction(txId, 0), tx['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[n].getrawtransaction(txId, False), tx['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to update this test every time the output format changes. assert_equal(self.nodes[n].getrawtransaction(txId, 1)["hex"], tx['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[n].getrawtransaction(txId, True)["hex"], tx['hex']) else: # Without -txindex, expect to raise. for verbose in [None, 0, False, 1, True]: assert_raises_rpc_error(-5, err_msg, self.nodes[n].getrawtransaction, txId, verbose) # 6. invalid parameters - supply txid and invalid boolean values (strings) for verbose for value in ["True", "False"]: assert_raises_rpc_error(-1, "not a boolean", self.nodes[n].getrawtransaction, txid=txId, verbose=value) # 7. invalid parameters - supply txid and empty array assert_raises_rpc_error(-1, "not a boolean", self.nodes[n].getrawtransaction, txId, []) # 8. invalid parameters - supply txid and empty dict assert_raises_rpc_error(-1, "not a boolean", self.nodes[n].getrawtransaction, txId, {}) # Make a tx by sending, then generate 2 blocks; block1 has the tx in it tx = self.wallet.send_self_transfer(from_node=self.nodes[2])['txid'] block1, block2 = self.generate(self.nodes[2], 2) for n in [0, 2]: self.log.info(f"Test getrawtransaction {'with' if n == 0 else 'without'} -txindex, with blockhash") # We should be able to get the raw transaction by providing the correct block gottx = self.nodes[n].getrawtransaction(txid=tx, verbose=True, blockhash=block1) assert_equal(gottx['txid'], tx) assert_equal(gottx['in_active_chain'], True) if n == 0: self.log.info("Test getrawtransaction with -txindex, without blockhash: 'in_active_chain' should be absent") gottx = self.nodes[n].getrawtransaction(txid=tx, verbose=True) assert_equal(gottx['txid'], tx) assert 'in_active_chain' not in gottx else: self.log.info("Test getrawtransaction without -txindex, without blockhash: expect the call to raise") assert_raises_rpc_error(-5, err_msg, self.nodes[n].getrawtransaction, txid=tx, verbose=True) # We should not get the tx if we provide an unrelated block assert_raises_rpc_error(-5, "No such transaction found", self.nodes[n].getrawtransaction, txid=tx, blockhash=block2) # An invalid block hash should raise the correct errors assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[n].getrawtransaction, txid=tx, blockhash=True) assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 6, for 'foobar')", self.nodes[n].getrawtransaction, txid=tx, blockhash="foobar") assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 8, for 'abcd1234')", self.nodes[n].getrawtransaction, txid=tx, blockhash="abcd1234") foo = "ZZZ0000000000000000000000000000000000000000000000000000000000000" assert_raises_rpc_error(-8, f"parameter 3 must be hexadecimal string (not '{foo}')", self.nodes[n].getrawtransaction, txid=tx, blockhash=foo) bar = "0000000000000000000000000000000000000000000000000000000000000000" assert_raises_rpc_error(-5, "Block hash not found", self.nodes[n].getrawtransaction, txid=tx, blockhash=bar) # Undo the blocks and verify that "in_active_chain" is false. self.nodes[n].invalidateblock(block1) gottx = self.nodes[n].getrawtransaction(txid=tx, verbose=True, blockhash=block1) assert_equal(gottx['in_active_chain'], False) self.nodes[n].reconsiderblock(block1) assert_equal(self.nodes[n].getbestblockhash(), block2) self.log.info("Test getrawtransaction on genesis block coinbase returns an error") block = self.nodes[0].getblock(self.nodes[0].getblockhash(0)) assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot']) def createrawtransaction_tests(self): self.log.info("Test createrawtransaction") # Test `createrawtransaction` required parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction) assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, []) # Test `createrawtransaction` invalid extra parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, False, 'foo') # Test `createrawtransaction` invalid `inputs` assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {}) assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {}) assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].createrawtransaction, [{}], {}) assert_raises_rpc_error(-8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {}) txid = "ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844" assert_raises_rpc_error(-8, f"txid must be hexadecimal string (not '{txid}')", self.nodes[0].createrawtransaction, [{'txid': txid}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': TXID}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': TXID, 'vout': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout cannot be negative", self.nodes[0].createrawtransaction, [{'txid': TXID, 'vout': -1}], {}) # sequence number out of range for invalid_seq in [-1, 4294967296]: inputs = [{'txid': TXID, 'vout': 1, 'sequence': invalid_seq}] address = getnewdestination()[2] outputs = {address: 1} assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) # with valid sequence number for valid_seq in [1000, 4294967294]: inputs = [{'txid': TXID, 'vout': 1, 'sequence': valid_seq}] address = getnewdestination()[2] outputs = {address: 1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], valid_seq) # Test `createrawtransaction` invalid `outputs` address = getnewdestination()[2] assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo') self.nodes[0].createrawtransaction(inputs=[], outputs={}) # Should not throw for backwards compatibility self.nodes[0].createrawtransaction(inputs=[], outputs=[]) assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'}) assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0}) assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'}) assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1}) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)])) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], [{"data": 'aa'}, {"data": "bb"}]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], multidict([("data", 'aa'), ("data", "bb")])) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}]) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']]) # Test `createrawtransaction` mismatch between sequence number(s) and `replaceable` option assert_raises_rpc_error(-8, "Invalid parameter combination: Sequence number(s) contradict replaceable option", self.nodes[0].createrawtransaction, [{'txid': TXID, 'vout': 0, 'sequence': BIP125_SEQUENCE_NUMBER+1}], {}, 0, True) # Test `createrawtransaction` invalid `locktime` assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo') assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1) assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296) # Test `createrawtransaction` invalid `replaceable` assert_raises_rpc_error(-3, "Expected type bool", self.nodes[0].createrawtransaction, [], {}, 0, 'foo') # Test that createrawtransaction accepts an array and object as outputs # One output tx = tx_from_hex(self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs={address: 99})) assert_equal(len(tx.vout), 1) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=[{address: 99}]), ) # Two outputs address2 = getnewdestination()[2] tx = tx_from_hex(self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)]))) assert_equal(len(tx.vout), 2) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=[{address: 99}, {address2: 99}]), ) # Multiple mixed outputs tx = tx_from_hex(self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=multidict([(address, 99), (address2, 99), ('data', '99')]))) assert_equal(len(tx.vout), 3) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': TXID, 'vout': 9}], outputs=[{address: 99}, {address2: 99}, {'data': '99'}]), ) def sendrawtransaction_tests(self): self.log.info("Test sendrawtransaction with missing input") inputs = [{'txid': TXID, 'vout': 1}] # won't exist address = getnewdestination()[2] outputs = {address: 4.998} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) assert_raises_rpc_error(-25, "bad-txns-inputs-missingorspent", self.nodes[2].sendrawtransaction, rawtx) def sendrawtransaction_testmempoolaccept_tests(self): self.log.info("Test sendrawtransaction/testmempoolaccept with maxfeerate") fee_exceeds_max = "Fee exceeds maximum configured by user (e.g. -maxtxfee, maxfeerate)" # Test a transaction with a small fee. # Fee rate is 0.00100000 BTC/kvB tx = self.wallet.create_self_transfer(fee_rate=Decimal('0.00100000')) # Thus, testmempoolaccept should reject testres = self.nodes[2].testmempoolaccept([tx['hex']], 0.00001000)[0] assert_equal(testres['allowed'], False) assert_equal(testres['reject-reason'], 'max-fee-exceeded') # and sendrawtransaction should throw assert_raises_rpc_error(-25, fee_exceeds_max, self.nodes[2].sendrawtransaction, tx['hex'], 0.00001000) # and the following calls should both succeed testres = self.nodes[2].testmempoolaccept(rawtxs=[tx['hex']])[0] assert_equal(testres['allowed'], True) self.nodes[2].sendrawtransaction(hexstring=tx['hex']) # Test a transaction with a large fee. # Fee rate is 0.20000000 BTC/kvB tx = self.wallet.create_self_transfer(mempool_valid=False, from_node=self.nodes[0], fee_rate=Decimal('0.20000000')) # Thus, testmempoolaccept should reject testres = self.nodes[2].testmempoolaccept([tx['hex']])[0] assert_equal(testres['allowed'], False) assert_equal(testres['reject-reason'], 'max-fee-exceeded') # and sendrawtransaction should throw assert_raises_rpc_error(-25, fee_exceeds_max, self.nodes[2].sendrawtransaction, tx['hex']) # and the following calls should both succeed testres = self.nodes[2].testmempoolaccept(rawtxs=[tx['hex']], maxfeerate='0.20000000')[0] assert_equal(testres['allowed'], True) self.nodes[2].sendrawtransaction(hexstring=tx['hex'], maxfeerate='0.20000000') self.log.info("Test sendrawtransaction/testmempoolaccept with tx already in the chain") self.generate(self.nodes[2], 1) for node in self.nodes: testres = node.testmempoolaccept([tx['hex']])[0] assert_equal(testres['allowed'], False) assert_equal(testres['reject-reason'], 'txn-already-known') assert_raises_rpc_error(-27, 'Transaction already in block chain', node.sendrawtransaction, tx['hex']) def decoderawtransaction_tests(self): self.log.info("Test decoderawtransaction") # witness transaction encrawtx = "010000000001010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f50500000000000102616100000000" decrawtx = self.nodes[0].decoderawtransaction(encrawtx, True) # decode as witness transaction assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000')) assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # force decode as non-witness transaction # non-witness transaction encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000" decrawtx = self.nodes[0].decoderawtransaction(encrawtx, False) # decode as non-witness transaction assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000')) # known ambiguous transaction in the chain (see https://github.com/bitcoin/bitcoin/issues/20579) coinbase = "03c68708046ff8415c622f4254432e434f4d2ffabe6d6de1965d02c68f928e5b244ab1965115a36f56eb997633c7f690124bbf43644e23080000000ca3d3af6d005a65ff0200fd00000000" encrawtx = f"020000000001010000000000000000000000000000000000000000000000000000000000000000ffffffff4b{coinbase}" \ "ffffffff03f4c1fb4b0000000016001497cfc76442fe717f2a3f0cc9c175f7561b6619970000000000000000266a24aa21a9ed957d1036a80343e0d1b659497e1b48a38ebe876a056d45965fac4a85cda84e1900000000000000002952534b424c4f434b3a8e092581ab01986cbadc84f4b43f4fa4bb9e7a2e2a0caf9b7cf64d939028e22c0120000000000000000000000000000000000000000000000000000000000000000000000000" decrawtx = self.nodes[0].decoderawtransaction(encrawtx) decrawtx_wit = self.nodes[0].decoderawtransaction(encrawtx, True) assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # fails to decode as non-witness transaction assert_equal(decrawtx, decrawtx_wit) # the witness interpretation should be chosen assert_equal(decrawtx['vin'][0]['coinbase'], coinbase) def transaction_version_number_tests(self): self.log.info("Test transaction version numbers") # Test the minimum transaction version number that fits in a signed 32-bit integer. # As transaction version is unsigned, this should convert to its unsigned equivalent. tx = CTransaction() tx.nVersion = -0x80000000 rawtx = tx.serialize().hex() decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], 0x80000000) # Test the maximum transaction version number that fits in a signed 32-bit integer. tx = CTransaction() tx.nVersion = 0x7fffffff rawtx = tx.serialize().hex() decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], 0x7fffffff) def raw_multisig_transaction_legacy_tests(self): self.log.info("Test raw multisig transactions (legacy)") # The traditional multisig workflow does not work with descriptor wallets so these are legacy only. # The multisig workflow with descriptor wallets uses PSBTs and is tested elsewhere, no need to do them here. # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) # Tests for createmultisig and addmultisigaddress assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"]) # createmultisig can only take public keys self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr1])['address'] # use balance deltas instead of absolute values bal = self.nodes[2].getbalance() # send 1.2 BTC to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.generate(self.nodes[0], 1) # node2 has both keys of the 2of2 ms addr, tx should affect the balance assert_equal(self.nodes[2].getbalance(), bal + Decimal('1.20000000')) # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) addr3Obj = self.nodes[2].getaddressinfo(addr3) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address'] txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.generate(self.nodes[0], 1) # THIS IS AN INCOMPLETE FEATURE # NODE2 HAS TWO OF THREE KEYS AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION assert_equal(self.nodes[2].getbalance(), bal) # for now, assume the funds of a 2of3 multisig tx are not marked as spendable txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('2.20000000')) bal = self.nodes[0].getbalance() inputs = [{"txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "amount": vout['value']}] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet(rawTx, inputs) assert_equal(rawTxPartialSigned['complete'], False) # node1 only has one key, can't comp. sign the tx rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs) assert_equal(rawTxSigned['complete'], True) # node2 can sign the tx compl., own two of three keys self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.generate(self.nodes[0], 1) assert_equal(self.nodes[0].getbalance(), bal + Decimal('50.00000000') + Decimal('2.19000000')) # block reward + tx # 2of2 test for combining transactions bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObjValid = self.nodes[2].getaddressinfo(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.generate(self.nodes[0], 1) assert_equal(self.nodes[2].getbalance(), bal) # the funds of a 2of2 multisig tx should not be marked as spendable txDetails = self.nodes[0].gettransaction(txId, True) rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = next(o for o in rawTx2['vout'] if o['value'] == Decimal('2.20000000')) bal = self.nodes[0].getbalance() inputs = [{"txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "redeemScript": mSigObjValid['hex'], "amount": vout['value']}] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet(rawTx2, inputs) self.log.debug(rawTxPartialSigned1) assert_equal(rawTxPartialSigned1['complete'], False) # node1 only has one key, can't comp. sign the tx rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet(rawTx2, inputs) self.log.debug(rawTxPartialSigned2) assert_equal(rawTxPartialSigned2['complete'], False) # node2 only has one key, can't comp. sign the tx rawTxComb = self.nodes[2].combinerawtransaction([rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']]) self.log.debug(rawTxComb) self.nodes[2].sendrawtransaction(rawTxComb) rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb) self.sync_all() self.generate(self.nodes[0], 1) assert_equal(self.nodes[0].getbalance(), bal + Decimal('50.00000000') + Decimal('2.19000000')) # block reward + tx if __name__ == '__main__': RawTransactionsTest().main()