// Copyright (c) 2016-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include RBFTransactionState IsRBFOptIn(const CTransaction& tx, const CTxMemPool& pool) { AssertLockHeld(pool.cs); CTxMemPool::setEntries setAncestors; // First check the transaction itself. if (SignalsOptInRBF(tx)) { return RBFTransactionState::REPLACEABLE_BIP125; } // If this transaction is not in our mempool, then we can't be sure // we will know about all its inputs. if (!pool.exists(tx.GetHash())) { return RBFTransactionState::UNKNOWN; } // If all the inputs have nSequence >= maxint-1, it still might be // signaled for RBF if any unconfirmed parents have signaled. uint64_t noLimit = std::numeric_limits::max(); std::string dummy; CTxMemPoolEntry entry = *pool.mapTx.find(tx.GetHash()); pool.CalculateMemPoolAncestors(entry, setAncestors, noLimit, noLimit, noLimit, noLimit, dummy, false); for (CTxMemPool::txiter it : setAncestors) { if (SignalsOptInRBF(it->GetTx())) { return RBFTransactionState::REPLACEABLE_BIP125; } } return RBFTransactionState::FINAL; } RBFTransactionState IsRBFOptInEmptyMempool(const CTransaction& tx) { // If we don't have a local mempool we can only check the transaction itself. return SignalsOptInRBF(tx) ? RBFTransactionState::REPLACEABLE_BIP125 : RBFTransactionState::UNKNOWN; } std::optional GetEntriesForConflicts(const CTransaction& tx, CTxMemPool& m_pool, const CTxMemPool::setEntries& setIterConflicting, CTxMemPool::setEntries& allConflicting) { AssertLockHeld(m_pool.cs); const uint256 hash = tx.GetHash(); uint64_t nConflictingCount = 0; for (const auto& mi : setIterConflicting) { nConflictingCount += mi->GetCountWithDescendants(); // This potentially overestimates the number of actual descendants // but we just want to be conservative to avoid doing too much // work. if (nConflictingCount > MAX_BIP125_REPLACEMENT_CANDIDATES) { return strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n", hash.ToString(), nConflictingCount, MAX_BIP125_REPLACEMENT_CANDIDATES); } } // If not too many to replace, then calculate the set of // transactions that would have to be evicted for (CTxMemPool::txiter it : setIterConflicting) { m_pool.CalculateDescendants(it, allConflicting); } return std::nullopt; } std::optional HasNoNewUnconfirmed(const CTransaction& tx, const CTxMemPool& m_pool, const CTxMemPool::setEntries& setIterConflicting) { AssertLockHeld(m_pool.cs); std::set setConflictsParents; for (const auto& mi : setIterConflicting) { for (const CTxIn &txin : mi->GetTx().vin) { setConflictsParents.insert(txin.prevout.hash); } } for (unsigned int j = 0; j < tx.vin.size(); j++) { // We don't want to accept replacements that require low // feerate junk to be mined first. Ideally we'd keep track of // the ancestor feerates and make the decision based on that, // but for now requiring all new inputs to be confirmed works. // // Note that if you relax this to make RBF a little more useful, // this may break the CalculateMempoolAncestors RBF relaxation, // above. See the comment above the first CalculateMempoolAncestors // call for more info. if (!setConflictsParents.count(tx.vin[j].prevout.hash)) { // Rather than check the UTXO set - potentially expensive - // it's cheaper to just check if the new input refers to a // tx that's in the mempool. if (m_pool.exists(tx.vin[j].prevout.hash)) { return strprintf("replacement %s adds unconfirmed input, idx %d", tx.GetHash().ToString(), j); } } } return std::nullopt; }