// Copyright (c) 2017, 2021 Pieter Wuille // Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include namespace bech32 { namespace { typedef std::vector data; /** The Bech32 and Bech32m character set for encoding. */ const char* CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l"; /** The Bech32 and Bech32m character set for decoding. */ const int8_t CHARSET_REV[128] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 15, -1, 10, 17, 21, 20, 26, 30, 7, 5, -1, -1, -1, -1, -1, -1, -1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1, 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1, -1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1, 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1 }; /** We work with the finite field GF(1024) defined as a degree 2 extension of the base field GF(32) * The defining polynomial of the extension is x^2 + 9x + 23. * Let (e) be a root of this defining polynomial. Then (e) is a primitive element of GF(1024), * that is, a generator of the field. Every non-zero element of the field can then be represented * as (e)^k for some power k. * The array GF1024_EXP contains all these powers of (e) - GF1024_EXP[k] = (e)^k in GF(1024). * Conversely, GF1024_LOG contains the discrete logarithms of these powers, so * GF1024_LOG[GF1024_EXP[k]] == k. * The following function generates the two tables GF1024_EXP and GF1024_LOG as constexprs. */ constexpr std::pair, std::array> GenerateGFTables() { // Build table for GF(32). // We use these tables to perform arithmetic in GF(32) below, when constructing the // tables for GF(1024). std::array GF32_EXP{}; std::array GF32_LOG{}; // fmod encodes the defining polynomial of GF(32) over GF(2), x^5 + x^3 + 1. // Because coefficients in GF(2) are binary digits, the coefficients are packed as 101001. const int fmod = 41; // Elements of GF(32) are encoded as vectors of length 5 over GF(2), that is, // 5 binary digits. Each element (b_4, b_3, b_2, b_1, b_0) encodes a polynomial // b_4*x^4 + b_3*x^3 + b_2*x^2 + b_1*x^1 + b_0 (modulo fmod). // For example, 00001 = 1 is the multiplicative identity. GF32_EXP[0] = 1; GF32_LOG[0] = -1; GF32_LOG[1] = 0; int v = 1; for (int i = 1; i < 31; ++i) { // Multiplication by x is the same as shifting left by 1, as // every coefficient of the polynomial is moved up one place. v = v << 1; // If the polynomial now has an x^5 term, we subtract fmod from it // to remain working modulo fmod. Subtraction is the same as XOR in characteristic // 2 fields. if (v & 32) v ^= fmod; GF32_EXP[i] = v; GF32_LOG[v] = i; } // Build table for GF(1024) std::array GF1024_EXP{}; std::array GF1024_LOG{}; GF1024_EXP[0] = 1; GF1024_LOG[0] = -1; GF1024_LOG[1] = 0; // Each element v of GF(1024) is encoded as a 10 bit integer in the following way: // v = v1 || v0 where v0, v1 are 5-bit integers (elements of GF(32)). // The element (e) is encoded as 1 || 0, to represent 1*(e) + 0. Every other element // a*(e) + b is represented as a || b (a and b are both GF(32) elements). Given (v), // we compute (e)*(v) by multiplying in the following way: // // v0' = 23*v1 // v1' = 9*v1 + v0 // e*v = v1' || v0' // // Where 23, 9 are GF(32) elements encoded as described above. Multiplication in GF(32) // is done using the log/exp tables: // e^x * e^y = e^(x + y) so a * b = EXP[ LOG[a] + LOG [b] ] // for non-zero a and b. v = 1; for (int i = 1; i < 1023; ++i) { int v0 = v & 31; int v1 = v >> 5; int v0n = v1 ? GF32_EXP.at((GF32_LOG.at(v1) + GF32_LOG.at(23)) % 31) : 0; int v1n = (v1 ? GF32_EXP.at((GF32_LOG.at(v1) + GF32_LOG.at(9)) % 31) : 0) ^ v0; v = v1n << 5 | v0n; GF1024_EXP[i] = v; GF1024_LOG[v] = i; } return std::make_pair(GF1024_EXP, GF1024_LOG); } constexpr auto tables = GenerateGFTables(); constexpr const std::array& GF1024_EXP = tables.first; constexpr const std::array& GF1024_LOG = tables.second; /* Determine the final constant to use for the specified encoding. */ uint32_t EncodingConstant(Encoding encoding) { assert(encoding == Encoding::BECH32 || encoding == Encoding::BECH32M); return encoding == Encoding::BECH32 ? 1 : 0x2bc830a3; } /** This function will compute what 6 5-bit values to XOR into the last 6 input values, in order to * make the checksum 0. These 6 values are packed together in a single 30-bit integer. The higher * bits correspond to earlier values. */ uint32_t PolyMod(const data& v) { // The input is interpreted as a list of coefficients of a polynomial over F = GF(32), with an // implicit 1 in front. If the input is [v0,v1,v2,v3,v4], that polynomial is v(x) = // 1*x^5 + v0*x^4 + v1*x^3 + v2*x^2 + v3*x + v4. The implicit 1 guarantees that // [v0,v1,v2,...] has a distinct checksum from [0,v0,v1,v2,...]. // The output is a 30-bit integer whose 5-bit groups are the coefficients of the remainder of // v(x) mod g(x), where g(x) is the Bech32 generator, // x^6 + {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}. g(x) is chosen in such a way // that the resulting code is a BCH code, guaranteeing detection of up to 3 errors within a // window of 1023 characters. Among the various possible BCH codes, one was selected to in // fact guarantee detection of up to 4 errors within a window of 89 characters. // Note that the coefficients are elements of GF(32), here represented as decimal numbers // between {}. In this finite field, addition is just XOR of the corresponding numbers. For // example, {27} + {13} = {27 ^ 13} = {22}. Multiplication is more complicated, and requires // treating the bits of values themselves as coefficients of a polynomial over a smaller field, // GF(2), and multiplying those polynomials mod a^5 + a^3 + 1. For example, {5} * {26} = // (a^2 + 1) * (a^4 + a^3 + a) = (a^4 + a^3 + a) * a^2 + (a^4 + a^3 + a) = a^6 + a^5 + a^4 + a // = a^3 + 1 (mod a^5 + a^3 + 1) = {9}. // During the course of the loop below, `c` contains the bitpacked coefficients of the // polynomial constructed from just the values of v that were processed so far, mod g(x). In // the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of // v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value // for `c`. // The following Sage code constructs the generator used: // // B = GF(2) # Binary field // BP. = B[] # Polynomials over the binary field // F_mod = b**5 + b**3 + 1 // F. = GF(32, modulus=F_mod, repr='int') # GF(32) definition // FP. = F[] # Polynomials over GF(32) // E_mod = x**2 + F.fetch_int(9)*x + F.fetch_int(23) // E. = F.extension(E_mod) # GF(1024) extension field definition // for p in divisors(E.order() - 1): # Verify e has order 1023. // assert((e**p == 1) == (p % 1023 == 0)) // G = lcm([(e**i).minpoly() for i in range(997,1000)]) // print(G) # Print out the generator // // It demonstrates that g(x) is the least common multiple of the minimal polynomials // of 3 consecutive powers (997,998,999) of a primitive element (e) of GF(1024). // That guarantees it is, in fact, the generator of a primitive BCH code with cycle // length 1023 and distance 4. See https://en.wikipedia.org/wiki/BCH_code for more details. uint32_t c = 1; for (const auto v_i : v) { // We want to update `c` to correspond to a polynomial with one extra term. If the initial // value of `c` consists of the coefficients of c(x) = f(x) mod g(x), we modify it to // correspond to c'(x) = (f(x) * x + v_i) mod g(x), where v_i is the next input to // process. Simplifying: // c'(x) = (f(x) * x + v_i) mod g(x) // ((f(x) mod g(x)) * x + v_i) mod g(x) // (c(x) * x + v_i) mod g(x) // If c(x) = c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5, we want to compute // c'(x) = (c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5) * x + v_i mod g(x) // = c0*x^6 + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i mod g(x) // = c0*(x^6 mod g(x)) + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i // If we call (x^6 mod g(x)) = k(x), this can be written as // c'(x) = (c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i) + c0*k(x) // First, determine the value of c0: uint8_t c0 = c >> 25; // Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i: c = ((c & 0x1ffffff) << 5) ^ v_i; // Finally, for each set bit n in c0, conditionally add {2^n}k(x). These constants can be // computed using the following Sage code (continuing the code above): // // for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(g(x) mod x^6), packed in hex integers. // v = 0 // for coef in reversed((F.fetch_int(i)*(G % x**6)).coefficients(sparse=True)): // v = v*32 + coef.integer_representation() // print("0x%x" % v) // if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18} if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13} if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26} if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29} if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19} } return c; } /** Syndrome computes the values s_j = R(e^j) for j in [997, 998, 999]. As described above, the * generator polynomial G is the LCM of the minimal polynomials of (e)^997, (e)^998, and (e)^999. * * Consider a codeword with errors, of the form R(x) = C(x) + E(x). The residue is the bit-packed * result of computing R(x) mod G(X), where G is the generator of the code. Because C(x) is a valid * codeword, it is a multiple of G(X), so the residue is in fact just E(x) mod G(x). Note that all * of the (e)^j are roots of G(x) by definition, so R((e)^j) = E((e)^j). * * Let R(x) = r1*x^5 + r2*x^4 + r3*x^3 + r4*x^2 + r5*x + r6 * * To compute R((e)^j), we are really computing: * r1*(e)^(j*5) + r2*(e)^(j*4) + r3*(e)^(j*3) + r4*(e)^(j*2) + r5*(e)^j + r6 * * Now note that all of the (e)^(j*i) for i in [5..0] are constants and can be precomputed. * But even more than that, we can consider each coefficient as a bit-string. * For example, take r5 = (b_5, b_4, b_3, b_2, b_1) written out as 5 bits. Then: * r5*(e)^j = b_1*(e)^j + b_2*(2*(e)^j) + b_3*(4*(e)^j) + b_4*(8*(e)^j) + b_5*(16*(e)^j) * where all the (2^i*(e)^j) are constants and can be precomputed. * * Then we just add each of these corresponding constants to our final value based on the * bit values b_i. This is exactly what is done in the Syndrome function below. */ constexpr std::array GenerateSyndromeConstants() { std::array SYNDROME_CONSTS{}; for (int k = 1; k < 6; ++k) { for (int shift = 0; shift < 5; ++shift) { int16_t b = GF1024_LOG.at(size_t{1} << shift); int16_t c0 = GF1024_EXP.at((997*k + b) % 1023); int16_t c1 = GF1024_EXP.at((998*k + b) % 1023); int16_t c2 = GF1024_EXP.at((999*k + b) % 1023); uint32_t c = c2 << 20 | c1 << 10 | c0; int ind = 5*(k-1) + shift; SYNDROME_CONSTS[ind] = c; } } return SYNDROME_CONSTS; } constexpr std::array SYNDROME_CONSTS = GenerateSyndromeConstants(); /** * Syndrome returns the three values s_997, s_998, and s_999 described above, * packed into a 30-bit integer, where each group of 10 bits encodes one value. */ uint32_t Syndrome(const uint32_t residue) { // low is the first 5 bits, corresponding to the r6 in the residue // (the constant term of the polynomial). uint32_t low = residue & 0x1f; // We begin by setting s_j = low = r6 for all three values of j, because these are unconditional. uint32_t result = low ^ (low << 10) ^ (low << 20); // Then for each following bit, we add the corresponding precomputed constant if the bit is 1. // For example, 0x31edd3c4 is 1100011110 1101110100 1111000100 when unpacked in groups of 10 // bits, corresponding exactly to a^999 || a^998 || a^997 (matching the corresponding values in // GF1024_EXP above). In this way, we compute all three values of s_j for j in (997, 998, 999) // simultaneously. Recall that XOR corresponds to addition in a characteristic 2 field. for (int i = 0; i < 25; ++i) { result ^= ((residue >> (5+i)) & 1 ? SYNDROME_CONSTS.at(i) : 0); } return result; } /** Convert to lower case. */ inline unsigned char LowerCase(unsigned char c) { return (c >= 'A' && c <= 'Z') ? (c - 'A') + 'a' : c; } /** Return indices of invalid characters in a Bech32 string. */ bool CheckCharacters(const std::string& str, std::vector& errors) { bool lower = false, upper = false; for (size_t i = 0; i < str.size(); ++i) { unsigned char c{(unsigned char)(str[i])}; if (c >= 'a' && c <= 'z') { if (upper) { errors.push_back(i); } else { lower = true; } } else if (c >= 'A' && c <= 'Z') { if (lower) { errors.push_back(i); } else { upper = true; } } else if (c < 33 || c > 126) { errors.push_back(i); } } return errors.empty(); } /** Expand a HRP for use in checksum computation. */ data ExpandHRP(const std::string& hrp) { data ret; ret.reserve(hrp.size() + 90); ret.resize(hrp.size() * 2 + 1); for (size_t i = 0; i < hrp.size(); ++i) { unsigned char c = hrp[i]; ret[i] = c >> 5; ret[i + hrp.size() + 1] = c & 0x1f; } ret[hrp.size()] = 0; return ret; } /** Verify a checksum. */ Encoding VerifyChecksum(const std::string& hrp, const data& values) { // PolyMod computes what value to xor into the final values to make the checksum 0. However, // if we required that the checksum was 0, it would be the case that appending a 0 to a valid // list of values would result in a new valid list. For that reason, Bech32 requires the // resulting checksum to be 1 instead. In Bech32m, this constant was amended. See // https://gist.github.com/sipa/14c248c288c3880a3b191f978a34508e for details. const uint32_t check = PolyMod(Cat(ExpandHRP(hrp), values)); if (check == EncodingConstant(Encoding::BECH32)) return Encoding::BECH32; if (check == EncodingConstant(Encoding::BECH32M)) return Encoding::BECH32M; return Encoding::INVALID; } /** Create a checksum. */ data CreateChecksum(Encoding encoding, const std::string& hrp, const data& values) { data enc = Cat(ExpandHRP(hrp), values); enc.resize(enc.size() + 6); // Append 6 zeroes uint32_t mod = PolyMod(enc) ^ EncodingConstant(encoding); // Determine what to XOR into those 6 zeroes. data ret(6); for (size_t i = 0; i < 6; ++i) { // Convert the 5-bit groups in mod to checksum values. ret[i] = (mod >> (5 * (5 - i))) & 31; } return ret; } } // namespace /** Encode a Bech32 or Bech32m string. */ std::string Encode(Encoding encoding, const std::string& hrp, const data& values) { // First ensure that the HRP is all lowercase. BIP-173 and BIP350 require an encoder // to return a lowercase Bech32/Bech32m string, but if given an uppercase HRP, the // result will always be invalid. for (const char& c : hrp) assert(c < 'A' || c > 'Z'); data checksum = CreateChecksum(encoding, hrp, values); data combined = Cat(values, checksum); std::string ret = hrp + '1'; ret.reserve(ret.size() + combined.size()); for (const auto c : combined) { ret += CHARSET[c]; } return ret; } /** Decode a Bech32 or Bech32m string. */ DecodeResult Decode(const std::string& str, CharLimit limit) { std::vector errors; if (!CheckCharacters(str, errors)) return {}; size_t pos = str.rfind('1'); if (str.size() > limit) return {}; if (pos == str.npos || pos == 0 || pos + 7 > str.size()) { return {}; } data values(str.size() - 1 - pos); for (size_t i = 0; i < str.size() - 1 - pos; ++i) { unsigned char c = str[i + pos + 1]; int8_t rev = CHARSET_REV[c]; if (rev == -1) { return {}; } values[i] = rev; } std::string hrp; for (size_t i = 0; i < pos; ++i) { hrp += LowerCase(str[i]); } Encoding result = VerifyChecksum(hrp, values); if (result == Encoding::INVALID) return {}; return {result, std::move(hrp), data(values.begin(), values.end() - 6)}; } /** Find index of an incorrect character in a Bech32 string. */ std::pair> LocateErrors(const std::string& str, CharLimit limit) { std::vector error_locations{}; if (str.size() > limit) { error_locations.resize(str.size() - limit); std::iota(error_locations.begin(), error_locations.end(), static_cast(limit)); return std::make_pair("Bech32 string too long", std::move(error_locations)); } if (!CheckCharacters(str, error_locations)){ return std::make_pair("Invalid character or mixed case", std::move(error_locations)); } size_t pos = str.rfind('1'); if (pos == str.npos) { return std::make_pair("Missing separator", std::vector{}); } if (pos == 0 || pos + 7 > str.size()) { error_locations.push_back(pos); return std::make_pair("Invalid separator position", std::move(error_locations)); } std::string hrp; for (size_t i = 0; i < pos; ++i) { hrp += LowerCase(str[i]); } size_t length = str.size() - 1 - pos; // length of data part data values(length); for (size_t i = pos + 1; i < str.size(); ++i) { unsigned char c = str[i]; int8_t rev = CHARSET_REV[c]; if (rev == -1) { error_locations.push_back(i); return std::make_pair("Invalid Base 32 character", std::move(error_locations)); } values[i - pos - 1] = rev; } // We attempt error detection with both bech32 and bech32m, and choose the one with the fewest errors // We can't simply use the segwit version, because that may be one of the errors std::optional error_encoding; for (Encoding encoding : {Encoding::BECH32, Encoding::BECH32M}) { std::vector possible_errors; // Recall that (ExpandHRP(hrp) ++ values) is interpreted as a list of coefficients of a polynomial // over GF(32). PolyMod computes the "remainder" of this polynomial modulo the generator G(x). uint32_t residue = PolyMod(Cat(ExpandHRP(hrp), values)) ^ EncodingConstant(encoding); // All valid codewords should be multiples of G(x), so this remainder (after XORing with the encoding // constant) should be 0 - hence 0 indicates there are no errors present. if (residue != 0) { // If errors are present, our polynomial must be of the form C(x) + E(x) where C is the valid // codeword (a multiple of G(x)), and E encodes the errors. uint32_t syn = Syndrome(residue); // Unpack the three 10-bit syndrome values int s0 = syn & 0x3FF; int s1 = (syn >> 10) & 0x3FF; int s2 = syn >> 20; // Get the discrete logs of these values in GF1024 for more efficient computation int l_s0 = GF1024_LOG.at(s0); int l_s1 = GF1024_LOG.at(s1); int l_s2 = GF1024_LOG.at(s2); // First, suppose there is only a single error. Then E(x) = e1*x^p1 for some position p1 // Then s0 = E((e)^997) = e1*(e)^(997*p1) and s1 = E((e)^998) = e1*(e)^(998*p1) // Therefore s1/s0 = (e)^p1, and by the same logic, s2/s1 = (e)^p1 too. // Hence, s1^2 == s0*s2, which is exactly the condition we check first: if (l_s0 != -1 && l_s1 != -1 && l_s2 != -1 && (2 * l_s1 - l_s2 - l_s0 + 2046) % 1023 == 0) { // Compute the error position p1 as l_s1 - l_s0 = p1 (mod 1023) size_t p1 = (l_s1 - l_s0 + 1023) % 1023; // the +1023 ensures it is positive // Now because s0 = e1*(e)^(997*p1), we get e1 = s0/((e)^(997*p1)). Remember that (e)^1023 = 1, // so 1/((e)^997) = (e)^(1023-997). int l_e1 = l_s0 + (1023 - 997) * p1; // Finally, some sanity checks on the result: // - The error position should be within the length of the data // - e1 should be in GF(32), which implies that e1 = (e)^(33k) for some k (the 31 non-zero elements // of GF(32) form an index 33 subgroup of the 1023 non-zero elements of GF(1024)). if (p1 < length && !(l_e1 % 33)) { // Polynomials run from highest power to lowest, so the index p1 is from the right. // We don't return e1 because it is dangerous to suggest corrections to the user, // the user should check the address themselves. possible_errors.push_back(str.size() - p1 - 1); } // Otherwise, suppose there are two errors. Then E(x) = e1*x^p1 + e2*x^p2. } else { // For all possible first error positions p1 for (size_t p1 = 0; p1 < length; ++p1) { // We have guessed p1, and want to solve for p2. Recall that E(x) = e1*x^p1 + e2*x^p2, so // s0 = E((e)^997) = e1*(e)^(997^p1) + e2*(e)^(997*p2), and similar for s1 and s2. // // Consider s2 + s1*(e)^p1 // = 2e1*(e)^(999^p1) + e2*(e)^(999*p2) + e2*(e)^(998*p2)*(e)^p1 // = e2*(e)^(999*p2) + e2*(e)^(998*p2)*(e)^p1 // (Because we are working in characteristic 2.) // = e2*(e)^(998*p2) ((e)^p2 + (e)^p1) // int s2_s1p1 = s2 ^ (s1 == 0 ? 0 : GF1024_EXP.at((l_s1 + p1) % 1023)); if (s2_s1p1 == 0) continue; int l_s2_s1p1 = GF1024_LOG.at(s2_s1p1); // Similarly, s1 + s0*(e)^p1 // = e2*(e)^(997*p2) ((e)^p2 + (e)^p1) int s1_s0p1 = s1 ^ (s0 == 0 ? 0 : GF1024_EXP.at((l_s0 + p1) % 1023)); if (s1_s0p1 == 0) continue; int l_s1_s0p1 = GF1024_LOG.at(s1_s0p1); // So, putting these together, we can compute the second error position as // (e)^p2 = (s2 + s1^p1)/(s1 + s0^p1) // p2 = log((e)^p2) size_t p2 = (l_s2_s1p1 - l_s1_s0p1 + 1023) % 1023; // Sanity checks that p2 is a valid position and not the same as p1 if (p2 >= length || p1 == p2) continue; // Now we want to compute the error values e1 and e2. // Similar to above, we compute s1 + s0*(e)^p2 // = e1*(e)^(997*p1) ((e)^p1 + (e)^p2) int s1_s0p2 = s1 ^ (s0 == 0 ? 0 : GF1024_EXP.at((l_s0 + p2) % 1023)); if (s1_s0p2 == 0) continue; int l_s1_s0p2 = GF1024_LOG.at(s1_s0p2); // And compute (the log of) 1/((e)^p1 + (e)^p2)) int inv_p1_p2 = 1023 - GF1024_LOG.at(GF1024_EXP.at(p1) ^ GF1024_EXP.at(p2)); // Then (s1 + s0*(e)^p1) * (1/((e)^p1 + (e)^p2))) // = e2*(e)^(997*p2) // Then recover e2 by dividing by (e)^(997*p2) int l_e2 = l_s1_s0p1 + inv_p1_p2 + (1023 - 997) * p2; // Check that e2 is in GF(32) if (l_e2 % 33) continue; // In the same way, (s1 + s0*(e)^p2) * (1/((e)^p1 + (e)^p2))) // = e1*(e)^(997*p1) // So recover e1 by dividing by (e)^(997*p1) int l_e1 = l_s1_s0p2 + inv_p1_p2 + (1023 - 997) * p1; // Check that e1 is in GF(32) if (l_e1 % 33) continue; // Again, we do not return e1 or e2 for safety. // Order the error positions from the left of the string and return them if (p1 > p2) { possible_errors.push_back(str.size() - p1 - 1); possible_errors.push_back(str.size() - p2 - 1); } else { possible_errors.push_back(str.size() - p2 - 1); possible_errors.push_back(str.size() - p1 - 1); } break; } } } else { // No errors return std::make_pair("", std::vector{}); } if (error_locations.empty() || (!possible_errors.empty() && possible_errors.size() < error_locations.size())) { error_locations = std::move(possible_errors); if (!error_locations.empty()) error_encoding = encoding; } } std::string error_message = error_encoding == Encoding::BECH32M ? "Invalid Bech32m checksum" : error_encoding == Encoding::BECH32 ? "Invalid Bech32 checksum" : "Invalid checksum"; return std::make_pair(error_message, std::move(error_locations)); } } // namespace bech32