#include #include "num.h" #include "field.h" #include "group.h" #include "ecmult.h" #include "ecdsa.h" using namespace secp256k1; void test_run_ecmult_chain() { Context ctx; // random starting point A (on the curve) FieldElem ax; ax.SetHex("8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004"); FieldElem ay; ay.SetHex("a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f"); GroupElemJac a(ax,ay); // two random initial factors xn and gn Number xn(ctx); xn.SetHex("84cc5452f7fde1edb4d38a8ce9b1b84ccef31f146e569be9705d357a42985407"); Number gn(ctx); gn.SetHex("a1e58d22553dcd42b23980625d4c57a96e9323d42b3152e5ca2c3990edc7c9de"); // two small multipliers to be applied to xn and gn in every iteration: Number xf(ctx); xf.SetHex("1337"); Number gf(ctx); gf.SetHex("7113"); // accumulators with the resulting coefficients to A and G Number ae(ctx); ae.SetHex("01"); Number ge(ctx); ge.SetHex("00"); // the point being computed GroupElemJac x = a; const Number &order = GetGroupConst().order; for (int i=0; i<20000; i++) { // in each iteration, compute X = xn*X + gn*G; ECMult(ctx, x, x, xn, gn); // also compute ae and ge: the actual accumulated factors for A and G // if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) ae.SetModMul(ctx, ae, xn, order); ge.SetModMul(ctx, ge, xn, order); ge.SetAdd(ctx, ge, gn); ge.SetMod(ctx, ge, order); // modify xn and gn xn.SetModMul(ctx, xn, xf, order); gn.SetModMul(ctx, gn, gf, order); } std::string res = x.ToString(); assert(res == "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)"); // redo the computation, but directly with the resulting ae and ge coefficients: GroupElemJac x2; ECMult(ctx, x2, a, ae, ge); std::string res2 = x2.ToString(); assert(res == res2); } void test_point_times_order(const GroupElemJac &point) { // either the point is not on the curve, or multiplying it by the order results in O if (!point.IsValid()) return; const GroupConstants &c = GetGroupConst(); Context ctx; Number zero(ctx); zero.SetInt(0); GroupElemJac res; ECMult(ctx, res, point, c.order, zero); // calc res = order * point + 0 * G; assert(res.IsInfinity()); } void test_run_point_times_order() { Context ctx; FieldElem x; x.SetHex("0000000000000000000000000000000000000000000000000000000000000002"); for (int i=0; i<500; i++) { GroupElemJac j; j.SetCompressed(x, true); test_point_times_order(j); x.SetSquare(x); } } void test_wnaf(const Number &number, int w) { Context ctx; Number x(ctx), two(ctx), t(ctx); x.SetInt(0); two.SetInt(2); WNAF<1023> wnaf(ctx, number, w); int zeroes = -1; for (int i=wnaf.GetSize()-1; i>=0; i--) { x.SetMult(ctx, x, two); int v = wnaf.Get(i); if (v) { assert(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1 zeroes=0; assert((v & 1) == 1); // check non-zero elements are odd assert(v <= (1 << (w-1)) - 1); // check range below assert(v >= -(1 << (w-1)) - 1); // check range above } else { assert(zeroes != -1); // check that no unnecessary zero padding exists zeroes++; } t.SetInt(v); x.SetAdd(ctx, x, t); } assert(x.Compare(number) == 0); // check that wnaf represents number } void test_run_wnaf() { Context ctx; Number range(ctx), min(ctx), n(ctx); range.SetHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"); min = range; min.Shift1(); min.Negate(); for (int i=0; i<100; i++) { n.SetPseudoRand(range); n.SetAdd(ctx,n,min); test_wnaf(n, 4+(i%10)); } } int main(void) { test_run_wnaf(); test_run_point_times_order(); test_run_ecmult_chain(); return 0; }