// Copyright (c) 2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include using interfaces::FoundBlock; static constexpr size_t OUTPUT_GROUP_MAX_ENTRIES{100}; std::string COutput::ToString() const { return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString(), i, nDepth, FormatMoney(tx->tx->vout[i].nValue)); } int CalculateMaximumSignedInputSize(const CTxOut& txout, const CWallet* wallet, bool use_max_sig) { CMutableTransaction txn; txn.vin.push_back(CTxIn(COutPoint())); if (!wallet->DummySignInput(txn.vin[0], txout, use_max_sig)) { return -1; } return GetVirtualTransactionInputSize(txn.vin[0]); } // txouts needs to be in the order of tx.vin TxSize CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, const std::vector& txouts, bool use_max_sig) { CMutableTransaction txNew(tx); if (!wallet->DummySignTx(txNew, txouts, use_max_sig)) { return TxSize{-1, -1}; } CTransaction ctx(txNew); int64_t vsize = GetVirtualTransactionSize(ctx); int64_t weight = GetTransactionWeight(ctx); return TxSize{vsize, weight}; } TxSize CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, bool use_max_sig) { std::vector txouts; for (const CTxIn& input : tx.vin) { const auto mi = wallet->mapWallet.find(input.prevout.hash); // Can not estimate size without knowing the input details if (mi == wallet->mapWallet.end()) { return TxSize{-1, -1}; } assert(input.prevout.n < mi->second.tx->vout.size()); txouts.emplace_back(mi->second.tx->vout[input.prevout.n]); } return CalculateMaximumSignedTxSize(tx, wallet, txouts, use_max_sig); } void CWallet::AvailableCoins(std::vector& vCoins, const CCoinControl* coinControl, const CAmount& nMinimumAmount, const CAmount& nMaximumAmount, const CAmount& nMinimumSumAmount, const uint64_t nMaximumCount) const { AssertLockHeld(cs_wallet); vCoins.clear(); CAmount nTotal = 0; // Either the WALLET_FLAG_AVOID_REUSE flag is not set (in which case we always allow), or we default to avoiding, and only in the case where // a coin control object is provided, and has the avoid address reuse flag set to false, do we allow already used addresses bool allow_used_addresses = !IsWalletFlagSet(WALLET_FLAG_AVOID_REUSE) || (coinControl && !coinControl->m_avoid_address_reuse); const int min_depth = {coinControl ? coinControl->m_min_depth : DEFAULT_MIN_DEPTH}; const int max_depth = {coinControl ? coinControl->m_max_depth : DEFAULT_MAX_DEPTH}; const bool only_safe = {coinControl ? !coinControl->m_include_unsafe_inputs : true}; std::set trusted_parents; for (const auto& entry : mapWallet) { const uint256& wtxid = entry.first; const CWalletTx& wtx = entry.second; if (!chain().checkFinalTx(*wtx.tx)) { continue; } if (wtx.IsImmatureCoinBase()) continue; int nDepth = wtx.GetDepthInMainChain(); if (nDepth < 0) continue; // We should not consider coins which aren't at least in our mempool // It's possible for these to be conflicted via ancestors which we may never be able to detect if (nDepth == 0 && !wtx.InMempool()) continue; bool safeTx = IsTrusted(wtx, trusted_parents); // We should not consider coins from transactions that are replacing // other transactions. // // Example: There is a transaction A which is replaced by bumpfee // transaction B. In this case, we want to prevent creation of // a transaction B' which spends an output of B. // // Reason: If transaction A were initially confirmed, transactions B // and B' would no longer be valid, so the user would have to create // a new transaction C to replace B'. However, in the case of a // one-block reorg, transactions B' and C might BOTH be accepted, // when the user only wanted one of them. Specifically, there could // be a 1-block reorg away from the chain where transactions A and C // were accepted to another chain where B, B', and C were all // accepted. if (nDepth == 0 && wtx.mapValue.count("replaces_txid")) { safeTx = false; } // Similarly, we should not consider coins from transactions that // have been replaced. In the example above, we would want to prevent // creation of a transaction A' spending an output of A, because if // transaction B were initially confirmed, conflicting with A and // A', we wouldn't want to the user to create a transaction D // intending to replace A', but potentially resulting in a scenario // where A, A', and D could all be accepted (instead of just B and // D, or just A and A' like the user would want). if (nDepth == 0 && wtx.mapValue.count("replaced_by_txid")) { safeTx = false; } if (only_safe && !safeTx) { continue; } if (nDepth < min_depth || nDepth > max_depth) { continue; } for (unsigned int i = 0; i < wtx.tx->vout.size(); i++) { // Only consider selected coins if add_inputs is false if (coinControl && !coinControl->m_add_inputs && !coinControl->IsSelected(COutPoint(entry.first, i))) { continue; } if (wtx.tx->vout[i].nValue < nMinimumAmount || wtx.tx->vout[i].nValue > nMaximumAmount) continue; if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs && !coinControl->IsSelected(COutPoint(entry.first, i))) continue; if (IsLockedCoin(entry.first, i)) continue; if (IsSpent(wtxid, i)) continue; isminetype mine = IsMine(wtx.tx->vout[i]); if (mine == ISMINE_NO) { continue; } if (!allow_used_addresses && IsSpentKey(wtxid, i)) { continue; } std::unique_ptr provider = GetSolvingProvider(wtx.tx->vout[i].scriptPubKey); bool solvable = provider ? IsSolvable(*provider, wtx.tx->vout[i].scriptPubKey) : false; bool spendable = ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (((mine & ISMINE_WATCH_ONLY) != ISMINE_NO) && (coinControl && coinControl->fAllowWatchOnly && solvable)); vCoins.push_back(COutput(&wtx, i, nDepth, spendable, solvable, safeTx, (coinControl && coinControl->fAllowWatchOnly))); // Checks the sum amount of all UTXO's. if (nMinimumSumAmount != MAX_MONEY) { nTotal += wtx.tx->vout[i].nValue; if (nTotal >= nMinimumSumAmount) { return; } } // Checks the maximum number of UTXO's. if (nMaximumCount > 0 && vCoins.size() >= nMaximumCount) { return; } } } } CAmount CWallet::GetAvailableBalance(const CCoinControl* coinControl) const { LOCK(cs_wallet); CAmount balance = 0; std::vector vCoins; AvailableCoins(vCoins, coinControl); for (const COutput& out : vCoins) { if (out.fSpendable) { balance += out.tx->tx->vout[out.i].nValue; } } return balance; } const CTxOut& CWallet::FindNonChangeParentOutput(const CTransaction& tx, int output) const { AssertLockHeld(cs_wallet); const CTransaction* ptx = &tx; int n = output; while (IsChange(ptx->vout[n]) && ptx->vin.size() > 0) { const COutPoint& prevout = ptx->vin[0].prevout; auto it = mapWallet.find(prevout.hash); if (it == mapWallet.end() || it->second.tx->vout.size() <= prevout.n || !IsMine(it->second.tx->vout[prevout.n])) { break; } ptx = it->second.tx.get(); n = prevout.n; } return ptx->vout[n]; } std::map> CWallet::ListCoins() const { AssertLockHeld(cs_wallet); std::map> result; std::vector availableCoins; AvailableCoins(availableCoins); for (const COutput& coin : availableCoins) { CTxDestination address; if ((coin.fSpendable || (IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS) && coin.fSolvable)) && ExtractDestination(FindNonChangeParentOutput(*coin.tx->tx, coin.i).scriptPubKey, address)) { result[address].emplace_back(std::move(coin)); } } std::vector lockedCoins; ListLockedCoins(lockedCoins); // Include watch-only for LegacyScriptPubKeyMan wallets without private keys const bool include_watch_only = GetLegacyScriptPubKeyMan() && IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS); const isminetype is_mine_filter = include_watch_only ? ISMINE_WATCH_ONLY : ISMINE_SPENDABLE; for (const COutPoint& output : lockedCoins) { auto it = mapWallet.find(output.hash); if (it != mapWallet.end()) { int depth = it->second.GetDepthInMainChain(); if (depth >= 0 && output.n < it->second.tx->vout.size() && IsMine(it->second.tx->vout[output.n]) == is_mine_filter ) { CTxDestination address; if (ExtractDestination(FindNonChangeParentOutput(*it->second.tx, output.n).scriptPubKey, address)) { result[address].emplace_back( &it->second, output.n, depth, true /* spendable */, true /* solvable */, false /* safe */); } } } } return result; } std::vector CWallet::GroupOutputs(const std::vector& outputs, const CoinSelectionParams& coin_sel_params, const CoinEligibilityFilter& filter, bool positive_only) const { std::vector groups_out; if (!coin_sel_params.m_avoid_partial_spends) { // Allowing partial spends means no grouping. Each COutput gets its own OutputGroup. for (const COutput& output : outputs) { // Skip outputs we cannot spend if (!output.fSpendable) continue; size_t ancestors, descendants; chain().getTransactionAncestry(output.tx->GetHash(), ancestors, descendants); CInputCoin input_coin = output.GetInputCoin(); // Make an OutputGroup containing just this output OutputGroup group{coin_sel_params}; group.Insert(input_coin, output.nDepth, output.tx->IsFromMe(ISMINE_ALL), ancestors, descendants, positive_only); // Check the OutputGroup's eligibility. Only add the eligible ones. if (positive_only && group.GetSelectionAmount() <= 0) continue; if (group.m_outputs.size() > 0 && group.EligibleForSpending(filter)) groups_out.push_back(group); } return groups_out; } // We want to combine COutputs that have the same scriptPubKey into single OutputGroups // except when there are more than OUTPUT_GROUP_MAX_ENTRIES COutputs grouped in an OutputGroup. // To do this, we maintain a map where the key is the scriptPubKey and the value is a vector of OutputGroups. // For each COutput, we check if the scriptPubKey is in the map, and if it is, the COutput's CInputCoin is added // to the last OutputGroup in the vector for the scriptPubKey. When the last OutputGroup has // OUTPUT_GROUP_MAX_ENTRIES CInputCoins, a new OutputGroup is added to the end of the vector. std::map> spk_to_groups_map; for (const auto& output : outputs) { // Skip outputs we cannot spend if (!output.fSpendable) continue; size_t ancestors, descendants; chain().getTransactionAncestry(output.tx->GetHash(), ancestors, descendants); CInputCoin input_coin = output.GetInputCoin(); CScript spk = input_coin.txout.scriptPubKey; std::vector& groups = spk_to_groups_map[spk]; if (groups.size() == 0) { // No OutputGroups for this scriptPubKey yet, add one groups.emplace_back(coin_sel_params); } // Get the last OutputGroup in the vector so that we can add the CInputCoin to it // A pointer is used here so that group can be reassigned later if it is full. OutputGroup* group = &groups.back(); // Check if this OutputGroup is full. We limit to OUTPUT_GROUP_MAX_ENTRIES when using -avoidpartialspends // to avoid surprising users with very high fees. if (group->m_outputs.size() >= OUTPUT_GROUP_MAX_ENTRIES) { // The last output group is full, add a new group to the vector and use that group for the insertion groups.emplace_back(coin_sel_params); group = &groups.back(); } // Add the input_coin to group group->Insert(input_coin, output.nDepth, output.tx->IsFromMe(ISMINE_ALL), ancestors, descendants, positive_only); } // Now we go through the entire map and pull out the OutputGroups for (const auto& spk_and_groups_pair: spk_to_groups_map) { const std::vector& groups_per_spk= spk_and_groups_pair.second; // Go through the vector backwards. This allows for the first item we deal with being the partial group. for (auto group_it = groups_per_spk.rbegin(); group_it != groups_per_spk.rend(); group_it++) { const OutputGroup& group = *group_it; // Don't include partial groups if there are full groups too and we don't want partial groups if (group_it == groups_per_spk.rbegin() && groups_per_spk.size() > 1 && !filter.m_include_partial_groups) { continue; } // Check the OutputGroup's eligibility. Only add the eligible ones. if (positive_only && group.GetSelectionAmount() <= 0) continue; if (group.m_outputs.size() > 0 && group.EligibleForSpending(filter)) groups_out.push_back(group); } } return groups_out; } bool CWallet::SelectCoinsMinConf(const CAmount& nTargetValue, const CoinEligibilityFilter& eligibility_filter, std::vector coins, std::set& setCoinsRet, CAmount& nValueRet, const CoinSelectionParams& coin_selection_params) const { setCoinsRet.clear(); nValueRet = 0; // Note that unlike KnapsackSolver, we do not include the fee for creating a change output as BnB will not create a change output. std::vector positive_groups = GroupOutputs(coins, coin_selection_params, eligibility_filter, true /* positive_only */); if (SelectCoinsBnB(positive_groups, nTargetValue, coin_selection_params.m_cost_of_change, setCoinsRet, nValueRet)) { return true; } // The knapsack solver has some legacy behavior where it will spend dust outputs. We retain this behavior, so don't filter for positive only here. std::vector all_groups = GroupOutputs(coins, coin_selection_params, eligibility_filter, false /* positive_only */); // While nTargetValue includes the transaction fees for non-input things, it does not include the fee for creating a change output. // So we need to include that for KnapsackSolver as well, as we are expecting to create a change output. return KnapsackSolver(nTargetValue + coin_selection_params.m_change_fee, all_groups, setCoinsRet, nValueRet); } bool CWallet::SelectCoins(const std::vector& vAvailableCoins, const CAmount& nTargetValue, std::set& setCoinsRet, CAmount& nValueRet, const CCoinControl& coin_control, CoinSelectionParams& coin_selection_params) const { std::vector vCoins(vAvailableCoins); CAmount value_to_select = nTargetValue; // coin control -> return all selected outputs (we want all selected to go into the transaction for sure) if (coin_control.HasSelected() && !coin_control.fAllowOtherInputs) { for (const COutput& out : vCoins) { if (!out.fSpendable) continue; nValueRet += out.tx->tx->vout[out.i].nValue; setCoinsRet.insert(out.GetInputCoin()); } return (nValueRet >= nTargetValue); } // calculate value from preset inputs and store them std::set setPresetCoins; CAmount nValueFromPresetInputs = 0; std::vector vPresetInputs; coin_control.ListSelected(vPresetInputs); for (const COutPoint& outpoint : vPresetInputs) { std::map::const_iterator it = mapWallet.find(outpoint.hash); if (it != mapWallet.end()) { const CWalletTx& wtx = it->second; // Clearly invalid input, fail if (wtx.tx->vout.size() <= outpoint.n) { return false; } // Just to calculate the marginal byte size CInputCoin coin(wtx.tx, outpoint.n, wtx.GetSpendSize(outpoint.n, false)); nValueFromPresetInputs += coin.txout.nValue; if (coin.m_input_bytes <= 0) { return false; // Not solvable, can't estimate size for fee } coin.effective_value = coin.txout.nValue - coin_selection_params.m_effective_feerate.GetFee(coin.m_input_bytes); if (coin_selection_params.m_subtract_fee_outputs) { value_to_select -= coin.txout.nValue; } else { value_to_select -= coin.effective_value; } setPresetCoins.insert(coin); } else { return false; // TODO: Allow non-wallet inputs } } // remove preset inputs from vCoins so that Coin Selection doesn't pick them. for (std::vector::iterator it = vCoins.begin(); it != vCoins.end() && coin_control.HasSelected();) { if (setPresetCoins.count(it->GetInputCoin())) it = vCoins.erase(it); else ++it; } unsigned int limit_ancestor_count = 0; unsigned int limit_descendant_count = 0; chain().getPackageLimits(limit_ancestor_count, limit_descendant_count); const size_t max_ancestors = (size_t)std::max(1, limit_ancestor_count); const size_t max_descendants = (size_t)std::max(1, limit_descendant_count); const bool fRejectLongChains = gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS); // form groups from remaining coins; note that preset coins will not // automatically have their associated (same address) coins included if (coin_control.m_avoid_partial_spends && vCoins.size() > OUTPUT_GROUP_MAX_ENTRIES) { // Cases where we have 101+ outputs all pointing to the same destination may result in // privacy leaks as they will potentially be deterministically sorted. We solve that by // explicitly shuffling the outputs before processing Shuffle(vCoins.begin(), vCoins.end(), FastRandomContext()); } // Coin Selection attempts to select inputs from a pool of eligible UTXOs to fund the // transaction at a target feerate. If an attempt fails, more attempts may be made using a more // permissive CoinEligibilityFilter. const bool res = [&] { // Pre-selected inputs already cover the target amount. if (value_to_select <= 0) return true; // If possible, fund the transaction with confirmed UTXOs only. Prefer at least six // confirmations on outputs received from other wallets and only spend confirmed change. if (SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(1, 6, 0), vCoins, setCoinsRet, nValueRet, coin_selection_params)) return true; if (SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(1, 1, 0), vCoins, setCoinsRet, nValueRet, coin_selection_params)) return true; // Fall back to using zero confirmation change (but with as few ancestors in the mempool as // possible) if we cannot fund the transaction otherwise. if (m_spend_zero_conf_change) { if (SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(0, 1, 2), vCoins, setCoinsRet, nValueRet, coin_selection_params)) return true; if (SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(0, 1, std::min((size_t)4, max_ancestors/3), std::min((size_t)4, max_descendants/3)), vCoins, setCoinsRet, nValueRet, coin_selection_params)) { return true; } if (SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(0, 1, max_ancestors/2, max_descendants/2), vCoins, setCoinsRet, nValueRet, coin_selection_params)) { return true; } // If partial groups are allowed, relax the requirement of spending OutputGroups (groups // of UTXOs sent to the same address, which are obviously controlled by a single wallet) // in their entirety. if (SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(0, 1, max_ancestors-1, max_descendants-1, true /* include_partial_groups */), vCoins, setCoinsRet, nValueRet, coin_selection_params)) { return true; } // Try with unsafe inputs if they are allowed. This may spend unconfirmed outputs // received from other wallets. if (coin_control.m_include_unsafe_inputs && SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(0 /* conf_mine */, 0 /* conf_theirs */, max_ancestors-1, max_descendants-1, true /* include_partial_groups */), vCoins, setCoinsRet, nValueRet, coin_selection_params)) { return true; } // Try with unlimited ancestors/descendants. The transaction will still need to meet // mempool ancestor/descendant policy to be accepted to mempool and broadcasted, but // OutputGroups use heuristics that may overestimate ancestor/descendant counts. if (!fRejectLongChains && SelectCoinsMinConf(value_to_select, CoinEligibilityFilter(0, 1, std::numeric_limits::max(), std::numeric_limits::max(), true /* include_partial_groups */), vCoins, setCoinsRet, nValueRet, coin_selection_params)) { return true; } } // Coin Selection failed. return false; }(); // SelectCoinsMinConf clears setCoinsRet, so add the preset inputs from coin_control to the coinset util::insert(setCoinsRet, setPresetCoins); // add preset inputs to the total value selected nValueRet += nValueFromPresetInputs; return res; } static bool IsCurrentForAntiFeeSniping(interfaces::Chain& chain, const uint256& block_hash) { if (chain.isInitialBlockDownload()) { return false; } constexpr int64_t MAX_ANTI_FEE_SNIPING_TIP_AGE = 8 * 60 * 60; // in seconds int64_t block_time; CHECK_NONFATAL(chain.findBlock(block_hash, FoundBlock().time(block_time))); if (block_time < (GetTime() - MAX_ANTI_FEE_SNIPING_TIP_AGE)) { return false; } return true; } /** * Return a height-based locktime for new transactions (uses the height of the * current chain tip unless we are not synced with the current chain */ static uint32_t GetLocktimeForNewTransaction(interfaces::Chain& chain, const uint256& block_hash, int block_height) { uint32_t locktime; // Discourage fee sniping. // // For a large miner the value of the transactions in the best block and // the mempool can exceed the cost of deliberately attempting to mine two // blocks to orphan the current best block. By setting nLockTime such that // only the next block can include the transaction, we discourage this // practice as the height restricted and limited blocksize gives miners // considering fee sniping fewer options for pulling off this attack. // // A simple way to think about this is from the wallet's point of view we // always want the blockchain to move forward. By setting nLockTime this // way we're basically making the statement that we only want this // transaction to appear in the next block; we don't want to potentially // encourage reorgs by allowing transactions to appear at lower heights // than the next block in forks of the best chain. // // Of course, the subsidy is high enough, and transaction volume low // enough, that fee sniping isn't a problem yet, but by implementing a fix // now we ensure code won't be written that makes assumptions about // nLockTime that preclude a fix later. if (IsCurrentForAntiFeeSniping(chain, block_hash)) { locktime = block_height; // Secondly occasionally randomly pick a nLockTime even further back, so // that transactions that are delayed after signing for whatever reason, // e.g. high-latency mix networks and some CoinJoin implementations, have // better privacy. if (GetRandInt(10) == 0) locktime = std::max(0, (int)locktime - GetRandInt(100)); } else { // If our chain is lagging behind, we can't discourage fee sniping nor help // the privacy of high-latency transactions. To avoid leaking a potentially // unique "nLockTime fingerprint", set nLockTime to a constant. locktime = 0; } assert(locktime < LOCKTIME_THRESHOLD); return locktime; } bool CWallet::CreateTransactionInternal( const std::vector& vecSend, CTransactionRef& tx, CAmount& nFeeRet, int& nChangePosInOut, bilingual_str& error, const CCoinControl& coin_control, FeeCalculation& fee_calc_out, bool sign) { AssertLockHeld(cs_wallet); CMutableTransaction txNew; // The resulting transaction that we make txNew.nLockTime = GetLocktimeForNewTransaction(chain(), GetLastBlockHash(), GetLastBlockHeight()); CoinSelectionParams coin_selection_params; // Parameters for coin selection, init with dummy coin_selection_params.m_avoid_partial_spends = coin_control.m_avoid_partial_spends; CAmount recipients_sum = 0; const OutputType change_type = TransactionChangeType(coin_control.m_change_type ? *coin_control.m_change_type : m_default_change_type, vecSend); ReserveDestination reservedest(this, change_type); unsigned int outputs_to_subtract_fee_from = 0; // The number of outputs which we are subtracting the fee from for (const auto& recipient : vecSend) { recipients_sum += recipient.nAmount; if (recipient.fSubtractFeeFromAmount) outputs_to_subtract_fee_from++; } // Create change script that will be used if we need change // TODO: pass in scriptChange instead of reservedest so // change transaction isn't always pay-to-bitcoin-address CScript scriptChange; // coin control: send change to custom address if (!std::get_if(&coin_control.destChange)) { scriptChange = GetScriptForDestination(coin_control.destChange); } else { // no coin control: send change to newly generated address // Note: We use a new key here to keep it from being obvious which side is the change. // The drawback is that by not reusing a previous key, the change may be lost if a // backup is restored, if the backup doesn't have the new private key for the change. // If we reused the old key, it would be possible to add code to look for and // rediscover unknown transactions that were written with keys of ours to recover // post-backup change. // Reserve a new key pair from key pool. If it fails, provide a dummy // destination in case we don't need change. CTxDestination dest; if (!reservedest.GetReservedDestination(dest, true)) { error = _("Transaction needs a change address, but we can't generate it. Please call keypoolrefill first."); } scriptChange = GetScriptForDestination(dest); // A valid destination implies a change script (and // vice-versa). An empty change script will abort later, if the // change keypool ran out, but change is required. CHECK_NONFATAL(IsValidDestination(dest) != scriptChange.empty()); } CTxOut change_prototype_txout(0, scriptChange); coin_selection_params.change_output_size = GetSerializeSize(change_prototype_txout); // Get size of spending the change output int change_spend_size = CalculateMaximumSignedInputSize(change_prototype_txout, this); // If the wallet doesn't know how to sign change output, assume p2sh-p2wpkh // as lower-bound to allow BnB to do it's thing if (change_spend_size == -1) { coin_selection_params.change_spend_size = DUMMY_NESTED_P2WPKH_INPUT_SIZE; } else { coin_selection_params.change_spend_size = (size_t)change_spend_size; } // Set discard feerate coin_selection_params.m_discard_feerate = GetDiscardRate(*this); // Get the fee rate to use effective values in coin selection FeeCalculation feeCalc; coin_selection_params.m_effective_feerate = GetMinimumFeeRate(*this, coin_control, &feeCalc); // Do not, ever, assume that it's fine to change the fee rate if the user has explicitly // provided one if (coin_control.m_feerate && coin_selection_params.m_effective_feerate > *coin_control.m_feerate) { error = strprintf(_("Fee rate (%s) is lower than the minimum fee rate setting (%s)"), coin_control.m_feerate->ToString(FeeEstimateMode::SAT_VB), coin_selection_params.m_effective_feerate.ToString(FeeEstimateMode::SAT_VB)); return false; } if (feeCalc.reason == FeeReason::FALLBACK && !m_allow_fallback_fee) { // eventually allow a fallback fee error = _("Fee estimation failed. Fallbackfee is disabled. Wait a few blocks or enable -fallbackfee."); return false; } // Get long term estimate CCoinControl cc_temp; cc_temp.m_confirm_target = chain().estimateMaxBlocks(); coin_selection_params.m_long_term_feerate = GetMinimumFeeRate(*this, cc_temp, nullptr); // Calculate the cost of change // Cost of change is the cost of creating the change output + cost of spending the change output in the future. // For creating the change output now, we use the effective feerate. // For spending the change output in the future, we use the discard feerate for now. // So cost of change = (change output size * effective feerate) + (size of spending change output * discard feerate) coin_selection_params.m_change_fee = coin_selection_params.m_effective_feerate.GetFee(coin_selection_params.change_output_size); coin_selection_params.m_cost_of_change = coin_selection_params.m_discard_feerate.GetFee(coin_selection_params.change_spend_size) + coin_selection_params.m_change_fee; coin_selection_params.m_subtract_fee_outputs = outputs_to_subtract_fee_from != 0; // If we are doing subtract fee from recipient, don't use effective values // vouts to the payees if (!coin_selection_params.m_subtract_fee_outputs) { coin_selection_params.tx_noinputs_size = 11; // Static vsize overhead + outputs vsize. 4 nVersion, 4 nLocktime, 1 input count, 1 output count, 1 witness overhead (dummy, flag, stack size) } for (const auto& recipient : vecSend) { CTxOut txout(recipient.nAmount, recipient.scriptPubKey); // Include the fee cost for outputs. if (!coin_selection_params.m_subtract_fee_outputs) { coin_selection_params.tx_noinputs_size += ::GetSerializeSize(txout, PROTOCOL_VERSION); } if (IsDust(txout, chain().relayDustFee())) { error = _("Transaction amount too small"); return false; } txNew.vout.push_back(txout); } // Include the fees for things that aren't inputs, excluding the change output const CAmount not_input_fees = coin_selection_params.m_effective_feerate.GetFee(coin_selection_params.tx_noinputs_size); CAmount selection_target = recipients_sum + not_input_fees; // Get available coins std::vector vAvailableCoins; AvailableCoins(vAvailableCoins, &coin_control, 1, MAX_MONEY, MAX_MONEY, 0); // Choose coins to use CAmount inputs_sum = 0; std::set setCoins; if (!SelectCoins(vAvailableCoins, /* nTargetValue */ selection_target, setCoins, inputs_sum, coin_control, coin_selection_params)) { error = _("Insufficient funds"); return false; } // Always make a change output // We will reduce the fee from this change output later, and remove the output if it is too small. const CAmount change_and_fee = inputs_sum - recipients_sum; assert(change_and_fee >= 0); CTxOut newTxOut(change_and_fee, scriptChange); if (nChangePosInOut == -1) { // Insert change txn at random position: nChangePosInOut = GetRandInt(txNew.vout.size()+1); } else if ((unsigned int)nChangePosInOut > txNew.vout.size()) { error = _("Change index out of range"); return false; } assert(nChangePosInOut != -1); auto change_position = txNew.vout.insert(txNew.vout.begin() + nChangePosInOut, newTxOut); // Dummy fill vin for maximum size estimation // for (const auto& coin : setCoins) { txNew.vin.push_back(CTxIn(coin.outpoint,CScript())); } // Calculate the transaction fee TxSize tx_sizes = CalculateMaximumSignedTxSize(CTransaction(txNew), this, coin_control.fAllowWatchOnly); int nBytes = tx_sizes.vsize; if (nBytes < 0) { error = _("Signing transaction failed"); return false; } nFeeRet = coin_selection_params.m_effective_feerate.GetFee(nBytes); // Subtract fee from the change output if not subtracting it from recipient outputs CAmount fee_needed = nFeeRet; if (outputs_to_subtract_fee_from == 0) { change_position->nValue -= fee_needed; } // We want to drop the change to fees if: // 1. The change output would be dust // 2. The change is within the (almost) exact match window, i.e. it is less than or equal to the cost of the change output (cost_of_change) CAmount change_amount = change_position->nValue; if (IsDust(*change_position, coin_selection_params.m_discard_feerate) || change_amount <= coin_selection_params.m_cost_of_change) { nChangePosInOut = -1; change_amount = 0; txNew.vout.erase(change_position); // Because we have dropped this change, the tx size and required fee will be different, so let's recalculate those tx_sizes = CalculateMaximumSignedTxSize(CTransaction(txNew), this, coin_control.fAllowWatchOnly); nBytes = tx_sizes.vsize; fee_needed = coin_selection_params.m_effective_feerate.GetFee(nBytes); } // Update nFeeRet in case fee_needed changed due to dropping the change output if (fee_needed <= change_and_fee - change_amount) { nFeeRet = change_and_fee - change_amount; } // Reduce output values for subtractFeeFromAmount if (outputs_to_subtract_fee_from != 0) { CAmount to_reduce = fee_needed + change_amount - change_and_fee; int i = 0; bool fFirst = true; for (const auto& recipient : vecSend) { if (i == nChangePosInOut) { ++i; } CTxOut& txout = txNew.vout[i]; if (recipient.fSubtractFeeFromAmount) { txout.nValue -= to_reduce / outputs_to_subtract_fee_from; // Subtract fee equally from each selected recipient if (fFirst) // first receiver pays the remainder not divisible by output count { fFirst = false; txout.nValue -= to_reduce % outputs_to_subtract_fee_from; } // Error if this output is reduced to be below dust if (IsDust(txout, chain().relayDustFee())) { if (txout.nValue < 0) { error = _("The transaction amount is too small to pay the fee"); } else { error = _("The transaction amount is too small to send after the fee has been deducted"); } return false; } } ++i; } nFeeRet = fee_needed; } // Give up if change keypool ran out and change is required if (scriptChange.empty() && nChangePosInOut != -1) { return false; } // Shuffle selected coins and fill in final vin txNew.vin.clear(); std::vector selected_coins(setCoins.begin(), setCoins.end()); Shuffle(selected_coins.begin(), selected_coins.end(), FastRandomContext()); // Note how the sequence number is set to non-maxint so that // the nLockTime set above actually works. // // BIP125 defines opt-in RBF as any nSequence < maxint-1, so // we use the highest possible value in that range (maxint-2) // to avoid conflicting with other possible uses of nSequence, // and in the spirit of "smallest possible change from prior // behavior." const uint32_t nSequence = coin_control.m_signal_bip125_rbf.value_or(m_signal_rbf) ? MAX_BIP125_RBF_SEQUENCE : (CTxIn::SEQUENCE_FINAL - 1); for (const auto& coin : selected_coins) { txNew.vin.push_back(CTxIn(coin.outpoint, CScript(), nSequence)); } if (sign && !SignTransaction(txNew)) { error = _("Signing transaction failed"); return false; } // Return the constructed transaction data. tx = MakeTransactionRef(std::move(txNew)); // Limit size if ((sign && GetTransactionWeight(*tx) > MAX_STANDARD_TX_WEIGHT) || (!sign && tx_sizes.weight > MAX_STANDARD_TX_WEIGHT)) { error = _("Transaction too large"); return false; } if (nFeeRet > m_default_max_tx_fee) { error = TransactionErrorString(TransactionError::MAX_FEE_EXCEEDED); return false; } if (gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS)) { // Lastly, ensure this tx will pass the mempool's chain limits if (!chain().checkChainLimits(tx)) { error = _("Transaction has too long of a mempool chain"); return false; } } // Before we return success, we assume any change key will be used to prevent // accidental re-use. reservedest.KeepDestination(); fee_calc_out = feeCalc; WalletLogPrintf("Fee Calculation: Fee:%d Bytes:%u Tgt:%d (requested %d) Reason:\"%s\" Decay %.5f: Estimation: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out) Fail: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out)\n", nFeeRet, nBytes, feeCalc.returnedTarget, feeCalc.desiredTarget, StringForFeeReason(feeCalc.reason), feeCalc.est.decay, feeCalc.est.pass.start, feeCalc.est.pass.end, (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool) > 0.0 ? 100 * feeCalc.est.pass.withinTarget / (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool) : 0.0, feeCalc.est.pass.withinTarget, feeCalc.est.pass.totalConfirmed, feeCalc.est.pass.inMempool, feeCalc.est.pass.leftMempool, feeCalc.est.fail.start, feeCalc.est.fail.end, (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool) > 0.0 ? 100 * feeCalc.est.fail.withinTarget / (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool) : 0.0, feeCalc.est.fail.withinTarget, feeCalc.est.fail.totalConfirmed, feeCalc.est.fail.inMempool, feeCalc.est.fail.leftMempool); return true; } bool CWallet::CreateTransaction( const std::vector& vecSend, CTransactionRef& tx, CAmount& nFeeRet, int& nChangePosInOut, bilingual_str& error, const CCoinControl& coin_control, FeeCalculation& fee_calc_out, bool sign) { if (vecSend.empty()) { error = _("Transaction must have at least one recipient"); return false; } if (std::any_of(vecSend.cbegin(), vecSend.cend(), [](const auto& recipient){ return recipient.nAmount < 0; })) { error = _("Transaction amounts must not be negative"); return false; } LOCK(cs_wallet); int nChangePosIn = nChangePosInOut; Assert(!tx); // tx is an out-param. TODO change the return type from bool to tx (or nullptr) bool res = CreateTransactionInternal(vecSend, tx, nFeeRet, nChangePosInOut, error, coin_control, fee_calc_out, sign); // try with avoidpartialspends unless it's enabled already if (res && nFeeRet > 0 /* 0 means non-functional fee rate estimation */ && m_max_aps_fee > -1 && !coin_control.m_avoid_partial_spends) { CCoinControl tmp_cc = coin_control; tmp_cc.m_avoid_partial_spends = true; CAmount nFeeRet2; CTransactionRef tx2; int nChangePosInOut2 = nChangePosIn; bilingual_str error2; // fired and forgotten; if an error occurs, we discard the results if (CreateTransactionInternal(vecSend, tx2, nFeeRet2, nChangePosInOut2, error2, tmp_cc, fee_calc_out, sign)) { // if fee of this alternative one is within the range of the max fee, we use this one const bool use_aps = nFeeRet2 <= nFeeRet + m_max_aps_fee; WalletLogPrintf("Fee non-grouped = %lld, grouped = %lld, using %s\n", nFeeRet, nFeeRet2, use_aps ? "grouped" : "non-grouped"); if (use_aps) { tx = tx2; nFeeRet = nFeeRet2; nChangePosInOut = nChangePosInOut2; } } } return res; } bool CWallet::FundTransaction(CMutableTransaction& tx, CAmount& nFeeRet, int& nChangePosInOut, bilingual_str& error, bool lockUnspents, const std::set& setSubtractFeeFromOutputs, CCoinControl coinControl) { std::vector vecSend; // Turn the txout set into a CRecipient vector. for (size_t idx = 0; idx < tx.vout.size(); idx++) { const CTxOut& txOut = tx.vout[idx]; CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, setSubtractFeeFromOutputs.count(idx) == 1}; vecSend.push_back(recipient); } coinControl.fAllowOtherInputs = true; for (const CTxIn& txin : tx.vin) { coinControl.Select(txin.prevout); } // Acquire the locks to prevent races to the new locked unspents between the // CreateTransaction call and LockCoin calls (when lockUnspents is true). LOCK(cs_wallet); CTransactionRef tx_new; FeeCalculation fee_calc_out; if (!CreateTransaction(vecSend, tx_new, nFeeRet, nChangePosInOut, error, coinControl, fee_calc_out, false)) { return false; } if (nChangePosInOut != -1) { tx.vout.insert(tx.vout.begin() + nChangePosInOut, tx_new->vout[nChangePosInOut]); } // Copy output sizes from new transaction; they may have had the fee // subtracted from them. for (unsigned int idx = 0; idx < tx.vout.size(); idx++) { tx.vout[idx].nValue = tx_new->vout[idx].nValue; } // Add new txins while keeping original txin scriptSig/order. for (const CTxIn& txin : tx_new->vin) { if (!coinControl.IsSelected(txin.prevout)) { tx.vin.push_back(txin); } if (lockUnspents) { LockCoin(txin.prevout); } } return true; }