# Copyright (c) 2019-2020 Pieter Wuille # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test-only secp256k1 elliptic curve protocols implementation WARNING: This code is slow, uses bad randomness, does not properly protect keys, and is trivially vulnerable to side channel attacks. Do not use for anything but tests.""" import csv import hashlib import hmac import os import random import unittest from test_framework import secp256k1 # Point with no known discrete log. H_POINT = "50929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0" # Order of the secp256k1 curve ORDER = secp256k1.GE.ORDER def TaggedHash(tag, data): ss = hashlib.sha256(tag.encode('utf-8')).digest() ss += ss ss += data return hashlib.sha256(ss).digest() class ECPubKey: """A secp256k1 public key""" def __init__(self): """Construct an uninitialized public key""" self.p = None def set(self, data): """Construct a public key from a serialization in compressed or uncompressed format""" self.p = secp256k1.GE.from_bytes(data) self.compressed = len(data) == 33 @property def is_compressed(self): return self.compressed @property def is_valid(self): return self.p is not None def get_bytes(self): assert self.is_valid if self.compressed: return self.p.to_bytes_compressed() else: return self.p.to_bytes_uncompressed() def verify_ecdsa(self, sig, msg, low_s=True): """Verify a strictly DER-encoded ECDSA signature against this pubkey. See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the ECDSA verifier algorithm""" assert self.is_valid # Extract r and s from the DER formatted signature. Return false for # any DER encoding errors. if (sig[1] + 2 != len(sig)): return False if (len(sig) < 4): return False if (sig[0] != 0x30): return False if (sig[2] != 0x02): return False rlen = sig[3] if (len(sig) < 6 + rlen): return False if rlen < 1 or rlen > 33: return False if sig[4] >= 0x80: return False if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)): return False r = int.from_bytes(sig[4:4+rlen], 'big') if (sig[4+rlen] != 0x02): return False slen = sig[5+rlen] if slen < 1 or slen > 33: return False if (len(sig) != 6 + rlen + slen): return False if sig[6+rlen] >= 0x80: return False if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)): return False s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big') # Verify that r and s are within the group order if r < 1 or s < 1 or r >= ORDER or s >= ORDER: return False if low_s and s >= secp256k1.GE.ORDER_HALF: return False z = int.from_bytes(msg, 'big') # Run verifier algorithm on r, s w = pow(s, -1, ORDER) R = secp256k1.GE.mul((z * w, secp256k1.G), (r * w, self.p)) if R.infinity or (int(R.x) % ORDER) != r: return False return True def generate_privkey(): """Generate a valid random 32-byte private key.""" return random.randrange(1, ORDER).to_bytes(32, 'big') def rfc6979_nonce(key): """Compute signing nonce using RFC6979.""" v = bytes([1] * 32) k = bytes([0] * 32) k = hmac.new(k, v + b"\x00" + key, 'sha256').digest() v = hmac.new(k, v, 'sha256').digest() k = hmac.new(k, v + b"\x01" + key, 'sha256').digest() v = hmac.new(k, v, 'sha256').digest() return hmac.new(k, v, 'sha256').digest() class ECKey: """A secp256k1 private key""" def __init__(self): self.valid = False def set(self, secret, compressed): """Construct a private key object with given 32-byte secret and compressed flag.""" assert len(secret) == 32 secret = int.from_bytes(secret, 'big') self.valid = (secret > 0 and secret < ORDER) if self.valid: self.secret = secret self.compressed = compressed def generate(self, compressed=True): """Generate a random private key (compressed or uncompressed).""" self.set(generate_privkey(), compressed) def get_bytes(self): """Retrieve the 32-byte representation of this key.""" assert self.valid return self.secret.to_bytes(32, 'big') @property def is_valid(self): return self.valid @property def is_compressed(self): return self.compressed def get_pubkey(self): """Compute an ECPubKey object for this secret key.""" assert self.valid ret = ECPubKey() ret.p = self.secret * secp256k1.G ret.compressed = self.compressed return ret def sign_ecdsa(self, msg, low_s=True, rfc6979=False): """Construct a DER-encoded ECDSA signature with this key. See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the ECDSA signer algorithm.""" assert self.valid z = int.from_bytes(msg, 'big') # Note: no RFC6979 by default, but a simple random nonce (some tests rely on distinct transactions for the same operation) if rfc6979: k = int.from_bytes(rfc6979_nonce(self.secret.to_bytes(32, 'big') + msg), 'big') else: k = random.randrange(1, ORDER) R = k * secp256k1.G r = int(R.x) % ORDER s = (pow(k, -1, ORDER) * (z + self.secret * r)) % ORDER if low_s and s > secp256k1.GE.ORDER_HALF: s = ORDER - s # Represent in DER format. The byte representations of r and s have # length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33 # bytes). rb = r.to_bytes((r.bit_length() + 8) // 8, 'big') sb = s.to_bytes((s.bit_length() + 8) // 8, 'big') return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb def compute_xonly_pubkey(key): """Compute an x-only (32 byte) public key from a (32 byte) private key. This also returns whether the resulting public key was negated. """ assert len(key) == 32 x = int.from_bytes(key, 'big') if x == 0 or x >= ORDER: return (None, None) P = x * secp256k1.G return (P.to_bytes_xonly(), not P.y.is_even()) def tweak_add_privkey(key, tweak): """Tweak a private key (after negating it if needed).""" assert len(key) == 32 assert len(tweak) == 32 x = int.from_bytes(key, 'big') if x == 0 or x >= ORDER: return None if not (x * secp256k1.G).y.is_even(): x = ORDER - x t = int.from_bytes(tweak, 'big') if t >= ORDER: return None x = (x + t) % ORDER if x == 0: return None return x.to_bytes(32, 'big') def tweak_add_pubkey(key, tweak): """Tweak a public key and return whether the result had to be negated.""" assert len(key) == 32 assert len(tweak) == 32 P = secp256k1.GE.from_bytes_xonly(key) if P is None: return None t = int.from_bytes(tweak, 'big') if t >= ORDER: return None Q = t * secp256k1.G + P if Q.infinity: return None return (Q.to_bytes_xonly(), not Q.y.is_even()) def verify_schnorr(key, sig, msg): """Verify a Schnorr signature (see BIP 340). - key is a 32-byte xonly pubkey (computed using compute_xonly_pubkey). - sig is a 64-byte Schnorr signature - msg is a 32-byte message """ assert len(key) == 32 assert len(msg) == 32 assert len(sig) == 64 P = secp256k1.GE.from_bytes_xonly(key) if P is None: return False r = int.from_bytes(sig[0:32], 'big') if r >= secp256k1.FE.SIZE: return False s = int.from_bytes(sig[32:64], 'big') if s >= ORDER: return False e = int.from_bytes(TaggedHash("BIP0340/challenge", sig[0:32] + key + msg), 'big') % ORDER R = secp256k1.GE.mul((s, secp256k1.G), (-e, P)) if R.infinity or not R.y.is_even(): return False if r != R.x: return False return True def sign_schnorr(key, msg, aux=None, flip_p=False, flip_r=False): """Create a Schnorr signature (see BIP 340).""" if aux is None: aux = bytes(32) assert len(key) == 32 assert len(msg) == 32 assert len(aux) == 32 sec = int.from_bytes(key, 'big') if sec == 0 or sec >= ORDER: return None P = sec * secp256k1.G if P.y.is_even() == flip_p: sec = ORDER - sec t = (sec ^ int.from_bytes(TaggedHash("BIP0340/aux", aux), 'big')).to_bytes(32, 'big') kp = int.from_bytes(TaggedHash("BIP0340/nonce", t + P.to_bytes_xonly() + msg), 'big') % ORDER assert kp != 0 R = kp * secp256k1.G k = kp if R.y.is_even() != flip_r else ORDER - kp e = int.from_bytes(TaggedHash("BIP0340/challenge", R.to_bytes_xonly() + P.to_bytes_xonly() + msg), 'big') % ORDER return R.to_bytes_xonly() + ((k + e * sec) % ORDER).to_bytes(32, 'big') class TestFrameworkKey(unittest.TestCase): def test_schnorr(self): """Test the Python Schnorr implementation.""" byte_arrays = [generate_privkey() for _ in range(3)] + [v.to_bytes(32, 'big') for v in [0, ORDER - 1, ORDER, 2**256 - 1]] keys = {} for privkey in byte_arrays: # build array of key/pubkey pairs pubkey, _ = compute_xonly_pubkey(privkey) if pubkey is not None: keys[privkey] = pubkey for msg in byte_arrays: # test every combination of message, signing key, verification key for sign_privkey, _ in keys.items(): sig = sign_schnorr(sign_privkey, msg) for verify_privkey, verify_pubkey in keys.items(): if verify_privkey == sign_privkey: self.assertTrue(verify_schnorr(verify_pubkey, sig, msg)) sig = list(sig) sig[random.randrange(64)] ^= (1 << (random.randrange(8))) # damaging signature should break things sig = bytes(sig) self.assertFalse(verify_schnorr(verify_pubkey, sig, msg)) def test_schnorr_testvectors(self): """Implement the BIP340 test vectors (read from bip340_test_vectors.csv).""" num_tests = 0 vectors_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'bip340_test_vectors.csv') with open(vectors_file, newline='', encoding='utf8') as csvfile: reader = csv.reader(csvfile) next(reader) for row in reader: (i_str, seckey_hex, pubkey_hex, aux_rand_hex, msg_hex, sig_hex, result_str, comment) = row i = int(i_str) pubkey = bytes.fromhex(pubkey_hex) msg = bytes.fromhex(msg_hex) sig = bytes.fromhex(sig_hex) result = result_str == 'TRUE' if seckey_hex != '': seckey = bytes.fromhex(seckey_hex) pubkey_actual = compute_xonly_pubkey(seckey)[0] self.assertEqual(pubkey.hex(), pubkey_actual.hex(), "BIP340 test vector %i (%s): pubkey mismatch" % (i, comment)) aux_rand = bytes.fromhex(aux_rand_hex) try: sig_actual = sign_schnorr(seckey, msg, aux_rand) self.assertEqual(sig.hex(), sig_actual.hex(), "BIP340 test vector %i (%s): sig mismatch" % (i, comment)) except RuntimeError as e: self.fail("BIP340 test vector %i (%s): signing raised exception %s" % (i, comment, e)) result_actual = verify_schnorr(pubkey, sig, msg) if result: self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification failed" % (i, comment)) else: self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification succeeded unexpectedly" % (i, comment)) num_tests += 1 self.assertTrue(num_tests >= 15) # expect at least 15 test vectors