// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "random.h" #include "support/cleanse.h" #ifdef WIN32 #include "compat.h" // for Windows API #endif #include "serialize.h" // for begin_ptr(vec) #include "util.h" // for LogPrint() #include "utilstrencodings.h" // for GetTime() #include <limits> #ifndef WIN32 #include <sys/time.h> #endif #include <openssl/err.h> #include <openssl/rand.h> static inline int64_t GetPerformanceCounter() { int64_t nCounter = 0; #ifdef WIN32 QueryPerformanceCounter((LARGE_INTEGER*)&nCounter); #else timeval t; gettimeofday(&t, NULL); nCounter = (int64_t)(t.tv_sec * 1000000 + t.tv_usec); #endif return nCounter; } void RandAddSeed() { // Seed with CPU performance counter int64_t nCounter = GetPerformanceCounter(); RAND_add(&nCounter, sizeof(nCounter), 1.5); memory_cleanse((void*)&nCounter, sizeof(nCounter)); } void RandAddSeedPerfmon() { RandAddSeed(); #ifdef WIN32 // Don't need this on Linux, OpenSSL automatically uses /dev/urandom // Seed with the entire set of perfmon data // This can take up to 2 seconds, so only do it every 10 minutes static int64_t nLastPerfmon; if (GetTime() < nLastPerfmon + 10 * 60) return; nLastPerfmon = GetTime(); std::vector<unsigned char> vData(250000, 0); long ret = 0; unsigned long nSize = 0; const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data while (true) { nSize = vData.size(); ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, begin_ptr(vData), &nSize); if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize) break; vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially } RegCloseKey(HKEY_PERFORMANCE_DATA); if (ret == ERROR_SUCCESS) { RAND_add(begin_ptr(vData), nSize, nSize / 100.0); memory_cleanse(begin_ptr(vData), nSize); LogPrint("rand", "%s: %lu bytes\n", __func__, nSize); } else { static bool warned = false; // Warn only once if (!warned) { LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret); warned = true; } } #endif } void GetRandBytes(unsigned char* buf, int num) { if (RAND_bytes(buf, num) != 1) { LogPrintf("%s: OpenSSL RAND_bytes() failed with error: %s\n", __func__, ERR_error_string(ERR_get_error(), NULL)); assert(false); } } uint64_t GetRand(uint64_t nMax) { if (nMax == 0) return 0; // The range of the random source must be a multiple of the modulus // to give every possible output value an equal possibility uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax; uint64_t nRand = 0; do { GetRandBytes((unsigned char*)&nRand, sizeof(nRand)); } while (nRand >= nRange); return (nRand % nMax); } int GetRandInt(int nMax) { return GetRand(nMax); } uint256 GetRandHash() { uint256 hash; GetRandBytes((unsigned char*)&hash, sizeof(hash)); return hash; } uint32_t insecure_rand_Rz = 11; uint32_t insecure_rand_Rw = 11; void seed_insecure_rand(bool fDeterministic) { // The seed values have some unlikely fixed points which we avoid. if (fDeterministic) { insecure_rand_Rz = insecure_rand_Rw = 11; } else { uint32_t tmp; do { GetRandBytes((unsigned char*)&tmp, 4); } while (tmp == 0 || tmp == 0x9068ffffU); insecure_rand_Rz = tmp; do { GetRandBytes((unsigned char*)&tmp, 4); } while (tmp == 0 || tmp == 0x464fffffU); insecure_rand_Rw = tmp; } }