// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SERIALIZE_H #define BITCOIN_SERIALIZE_H #include <compat/endian.h> #include <algorithm> #include <assert.h> #include <ios> #include <limits> #include <map> #include <memory> #include <set> #include <stdint.h> #include <string> #include <string.h> #include <utility> #include <vector> #include <prevector.h> #include <span.h> static const unsigned int MAX_SIZE = 0x02000000; /** * Dummy data type to identify deserializing constructors. * * By convention, a constructor of a type T with signature * * template <typename Stream> T::T(deserialize_type, Stream& s) * * is a deserializing constructor, which builds the type by * deserializing it from s. If T contains const fields, this * is likely the only way to do so. */ struct deserialize_type {}; constexpr deserialize_type deserialize {}; /** * Used to bypass the rule against non-const reference to temporary * where it makes sense with wrappers. */ template<typename T> inline T& REF(const T& val) { return const_cast<T&>(val); } /** * Used to acquire a non-const pointer "this" to generate bodies * of const serialization operations from a template */ template<typename T> inline T* NCONST_PTR(const T* val) { return const_cast<T*>(val); } //! Safely convert odd char pointer types to standard ones. inline char* CharCast(char* c) { return c; } inline char* CharCast(unsigned char* c) { return (char*)c; } inline const char* CharCast(const char* c) { return c; } inline const char* CharCast(const unsigned char* c) { return (const char*)c; } /* * Lowest-level serialization and conversion. * @note Sizes of these types are verified in the tests */ template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj) { s.write((char*)&obj, 1); } template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj) { obj = htole16(obj); s.write((char*)&obj, 2); } template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj) { obj = htobe16(obj); s.write((char*)&obj, 2); } template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj) { obj = htole32(obj); s.write((char*)&obj, 4); } template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj) { obj = htobe32(obj); s.write((char*)&obj, 4); } template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj) { obj = htole64(obj); s.write((char*)&obj, 8); } template<typename Stream> inline uint8_t ser_readdata8(Stream &s) { uint8_t obj; s.read((char*)&obj, 1); return obj; } template<typename Stream> inline uint16_t ser_readdata16(Stream &s) { uint16_t obj; s.read((char*)&obj, 2); return le16toh(obj); } template<typename Stream> inline uint16_t ser_readdata16be(Stream &s) { uint16_t obj; s.read((char*)&obj, 2); return be16toh(obj); } template<typename Stream> inline uint32_t ser_readdata32(Stream &s) { uint32_t obj; s.read((char*)&obj, 4); return le32toh(obj); } template<typename Stream> inline uint32_t ser_readdata32be(Stream &s) { uint32_t obj; s.read((char*)&obj, 4); return be32toh(obj); } template<typename Stream> inline uint64_t ser_readdata64(Stream &s) { uint64_t obj; s.read((char*)&obj, 8); return le64toh(obj); } inline uint64_t ser_double_to_uint64(double x) { union { double x; uint64_t y; } tmp; tmp.x = x; return tmp.y; } inline uint32_t ser_float_to_uint32(float x) { union { float x; uint32_t y; } tmp; tmp.x = x; return tmp.y; } inline double ser_uint64_to_double(uint64_t y) { union { double x; uint64_t y; } tmp; tmp.y = y; return tmp.x; } inline float ser_uint32_to_float(uint32_t y) { union { float x; uint32_t y; } tmp; tmp.y = y; return tmp.x; } ///////////////////////////////////////////////////////////////// // // Templates for serializing to anything that looks like a stream, // i.e. anything that supports .read(char*, size_t) and .write(char*, size_t) // class CSizeComputer; enum { // primary actions SER_NETWORK = (1 << 0), SER_DISK = (1 << 1), SER_GETHASH = (1 << 2), }; //! Convert the reference base type to X, without changing constness or reference type. template<typename X> X& ReadWriteAsHelper(X& x) { return x; } template<typename X> const X& ReadWriteAsHelper(const X& x) { return x; } #define READWRITE(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__)) #define READWRITEAS(type, obj) (::SerReadWriteMany(s, ser_action, ReadWriteAsHelper<type>(obj))) /** * Implement three methods for serializable objects. These are actually wrappers over * "SerializationOp" template, which implements the body of each class' serialization * code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be * added as members. */ #define ADD_SERIALIZE_METHODS \ template<typename Stream> \ void Serialize(Stream& s) const { \ NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize()); \ } \ template<typename Stream> \ void Unserialize(Stream& s) { \ SerializationOp(s, CSerActionUnserialize()); \ } #ifndef CHAR_EQUALS_INT8 template<typename Stream> inline void Serialize(Stream& s, char a ) { ser_writedata8(s, a); } // TODO Get rid of bare char #endif template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); } template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); } template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); } template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); } template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); } template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); } template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); } template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); } template<typename Stream> inline void Serialize(Stream& s, float a ) { ser_writedata32(s, ser_float_to_uint32(a)); } template<typename Stream> inline void Serialize(Stream& s, double a ) { ser_writedata64(s, ser_double_to_uint64(a)); } template<typename Stream, int N> inline void Serialize(Stream& s, const char (&a)[N]) { s.write(a, N); } template<typename Stream, int N> inline void Serialize(Stream& s, const unsigned char (&a)[N]) { s.write(CharCast(a), N); } template<typename Stream> inline void Serialize(Stream& s, const Span<const unsigned char>& span) { s.write(CharCast(span.data()), span.size()); } template<typename Stream> inline void Serialize(Stream& s, const Span<unsigned char>& span) { s.write(CharCast(span.data()), span.size()); } #ifndef CHAR_EQUALS_INT8 template<typename Stream> inline void Unserialize(Stream& s, char& a ) { a = ser_readdata8(s); } // TODO Get rid of bare char #endif template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); } template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); } template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); } template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); } template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); } template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); } template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); } template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); } template<typename Stream> inline void Unserialize(Stream& s, float& a ) { a = ser_uint32_to_float(ser_readdata32(s)); } template<typename Stream> inline void Unserialize(Stream& s, double& a ) { a = ser_uint64_to_double(ser_readdata64(s)); } template<typename Stream, int N> inline void Unserialize(Stream& s, char (&a)[N]) { s.read(a, N); } template<typename Stream, int N> inline void Unserialize(Stream& s, unsigned char (&a)[N]) { s.read(CharCast(a), N); } template<typename Stream> inline void Unserialize(Stream& s, Span<unsigned char>& span) { s.read(CharCast(span.data()), span.size()); } template<typename Stream> inline void Serialize(Stream& s, bool a) { char f=a; ser_writedata8(s, f); } template<typename Stream> inline void Unserialize(Stream& s, bool& a) { char f=ser_readdata8(s); a=f; } /** * Compact Size * size < 253 -- 1 byte * size <= USHRT_MAX -- 3 bytes (253 + 2 bytes) * size <= UINT_MAX -- 5 bytes (254 + 4 bytes) * size > UINT_MAX -- 9 bytes (255 + 8 bytes) */ inline unsigned int GetSizeOfCompactSize(uint64_t nSize) { if (nSize < 253) return sizeof(unsigned char); else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short); else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int); else return sizeof(unsigned char) + sizeof(uint64_t); } inline void WriteCompactSize(CSizeComputer& os, uint64_t nSize); template<typename Stream> void WriteCompactSize(Stream& os, uint64_t nSize) { if (nSize < 253) { ser_writedata8(os, nSize); } else if (nSize <= std::numeric_limits<unsigned short>::max()) { ser_writedata8(os, 253); ser_writedata16(os, nSize); } else if (nSize <= std::numeric_limits<unsigned int>::max()) { ser_writedata8(os, 254); ser_writedata32(os, nSize); } else { ser_writedata8(os, 255); ser_writedata64(os, nSize); } return; } template<typename Stream> uint64_t ReadCompactSize(Stream& is) { uint8_t chSize = ser_readdata8(is); uint64_t nSizeRet = 0; if (chSize < 253) { nSizeRet = chSize; } else if (chSize == 253) { nSizeRet = ser_readdata16(is); if (nSizeRet < 253) throw std::ios_base::failure("non-canonical ReadCompactSize()"); } else if (chSize == 254) { nSizeRet = ser_readdata32(is); if (nSizeRet < 0x10000u) throw std::ios_base::failure("non-canonical ReadCompactSize()"); } else { nSizeRet = ser_readdata64(is); if (nSizeRet < 0x100000000ULL) throw std::ios_base::failure("non-canonical ReadCompactSize()"); } if (nSizeRet > (uint64_t)MAX_SIZE) throw std::ios_base::failure("ReadCompactSize(): size too large"); return nSizeRet; } /** * Variable-length integers: bytes are a MSB base-128 encoding of the number. * The high bit in each byte signifies whether another digit follows. To make * sure the encoding is one-to-one, one is subtracted from all but the last digit. * Thus, the byte sequence a[] with length len, where all but the last byte * has bit 128 set, encodes the number: * * (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1)) * * Properties: * * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes) * * Every integer has exactly one encoding * * Encoding does not depend on size of original integer type * * No redundancy: every (infinite) byte sequence corresponds to a list * of encoded integers. * * 0: [0x00] 256: [0x81 0x00] * 1: [0x01] 16383: [0xFE 0x7F] * 127: [0x7F] 16384: [0xFF 0x00] * 128: [0x80 0x00] 16511: [0xFF 0x7F] * 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F] * 2^32: [0x8E 0xFE 0xFE 0xFF 0x00] */ /** * Mode for encoding VarInts. * * Currently there is no support for signed encodings. The default mode will not * compile with signed values, and the legacy "nonnegative signed" mode will * accept signed values, but improperly encode and decode them if they are * negative. In the future, the DEFAULT mode could be extended to support * negative numbers in a backwards compatible way, and additional modes could be * added to support different varint formats (e.g. zigzag encoding). */ enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED }; template <VarIntMode Mode, typename I> struct CheckVarIntMode { constexpr CheckVarIntMode() { static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned<I>::value, "Unsigned type required with mode DEFAULT."); static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed<I>::value, "Signed type required with mode NONNEGATIVE_SIGNED."); } }; template<VarIntMode Mode, typename I> inline unsigned int GetSizeOfVarInt(I n) { CheckVarIntMode<Mode, I>(); int nRet = 0; while(true) { nRet++; if (n <= 0x7F) break; n = (n >> 7) - 1; } return nRet; } template<typename I> inline void WriteVarInt(CSizeComputer& os, I n); template<typename Stream, VarIntMode Mode, typename I> void WriteVarInt(Stream& os, I n) { CheckVarIntMode<Mode, I>(); unsigned char tmp[(sizeof(n)*8+6)/7]; int len=0; while(true) { tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00); if (n <= 0x7F) break; n = (n >> 7) - 1; len++; } do { ser_writedata8(os, tmp[len]); } while(len--); } template<typename Stream, VarIntMode Mode, typename I> I ReadVarInt(Stream& is) { CheckVarIntMode<Mode, I>(); I n = 0; while(true) { unsigned char chData = ser_readdata8(is); if (n > (std::numeric_limits<I>::max() >> 7)) { throw std::ios_base::failure("ReadVarInt(): size too large"); } n = (n << 7) | (chData & 0x7F); if (chData & 0x80) { if (n == std::numeric_limits<I>::max()) { throw std::ios_base::failure("ReadVarInt(): size too large"); } n++; } else { return n; } } } #define VARINT(obj, ...) WrapVarInt<__VA_ARGS__>(REF(obj)) #define COMPACTSIZE(obj) CCompactSize(REF(obj)) #define LIMITED_STRING(obj,n) LimitedString< n >(REF(obj)) template<VarIntMode Mode, typename I> class CVarInt { protected: I &n; public: explicit CVarInt(I& nIn) : n(nIn) { } template<typename Stream> void Serialize(Stream &s) const { WriteVarInt<Stream,Mode,I>(s, n); } template<typename Stream> void Unserialize(Stream& s) { n = ReadVarInt<Stream,Mode,I>(s); } }; /** Serialization wrapper class for big-endian integers. * * Use this wrapper around integer types that are stored in memory in native * byte order, but serialized in big endian notation. This is only intended * to implement serializers that are compatible with existing formats, and * its use is not recommended for new data structures. * * Only 16-bit types are supported for now. */ template<typename I> class BigEndian { protected: I& m_val; public: explicit BigEndian(I& val) : m_val(val) { static_assert(std::is_unsigned<I>::value, "BigEndian type must be unsigned integer"); static_assert(sizeof(I) == 2 && std::numeric_limits<I>::min() == 0 && std::numeric_limits<I>::max() == std::numeric_limits<uint16_t>::max(), "Unsupported BigEndian size"); } template<typename Stream> void Serialize(Stream& s) const { ser_writedata16be(s, m_val); } template<typename Stream> void Unserialize(Stream& s) { m_val = ser_readdata16be(s); } }; class CCompactSize { protected: uint64_t &n; public: explicit CCompactSize(uint64_t& nIn) : n(nIn) { } template<typename Stream> void Serialize(Stream &s) const { WriteCompactSize<Stream>(s, n); } template<typename Stream> void Unserialize(Stream& s) { n = ReadCompactSize<Stream>(s); } }; template<size_t Limit> class LimitedString { protected: std::string& string; public: explicit LimitedString(std::string& _string) : string(_string) {} template<typename Stream> void Unserialize(Stream& s) { size_t size = ReadCompactSize(s); if (size > Limit) { throw std::ios_base::failure("String length limit exceeded"); } string.resize(size); if (size != 0) s.read((char*)string.data(), size); } template<typename Stream> void Serialize(Stream& s) const { WriteCompactSize(s, string.size()); if (!string.empty()) s.write((char*)string.data(), string.size()); } }; template<VarIntMode Mode=VarIntMode::DEFAULT, typename I> CVarInt<Mode, I> WrapVarInt(I& n) { return CVarInt<Mode, I>{n}; } template<typename I> BigEndian<I> WrapBigEndian(I& n) { return BigEndian<I>(n); } /** * Forward declarations */ /** * string */ template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str); template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str); /** * prevector * prevectors of unsigned char are a special case and are intended to be serialized as a single opaque blob. */ template<typename Stream, unsigned int N, typename T> void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&); template<typename Stream, unsigned int N, typename T, typename V> void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&); template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v); template<typename Stream, unsigned int N, typename T> void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&); template<typename Stream, unsigned int N, typename T, typename V> void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&); template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v); /** * vector * vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob. */ template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&); template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const bool&); template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&); template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v); template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&); template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&); template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v); /** * pair */ template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item); template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item); /** * map */ template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m); template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m); /** * set */ template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m); template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m); /** * shared_ptr */ template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p); template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p); /** * unique_ptr */ template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p); template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p); /** * If none of the specialized versions above matched, default to calling member function. */ template<typename Stream, typename T> inline void Serialize(Stream& os, const T& a) { a.Serialize(os); } template<typename Stream, typename T> inline void Unserialize(Stream& is, T&& a) { a.Unserialize(is); } /** * string */ template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str) { WriteCompactSize(os, str.size()); if (!str.empty()) os.write((char*)str.data(), str.size() * sizeof(C)); } template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str) { unsigned int nSize = ReadCompactSize(is); str.resize(nSize); if (nSize != 0) is.read((char*)str.data(), nSize * sizeof(C)); } /** * prevector */ template<typename Stream, unsigned int N, typename T> void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&) { WriteCompactSize(os, v.size()); if (!v.empty()) os.write((char*)v.data(), v.size() * sizeof(T)); } template<typename Stream, unsigned int N, typename T, typename V> void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&) { WriteCompactSize(os, v.size()); for (typename prevector<N, T>::const_iterator vi = v.begin(); vi != v.end(); ++vi) ::Serialize(os, (*vi)); } template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v) { Serialize_impl(os, v, T()); } template<typename Stream, unsigned int N, typename T> void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&) { // Limit size per read so bogus size value won't cause out of memory v.clear(); unsigned int nSize = ReadCompactSize(is); unsigned int i = 0; while (i < nSize) { unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T))); v.resize_uninitialized(i + blk); is.read((char*)&v[i], blk * sizeof(T)); i += blk; } } template<typename Stream, unsigned int N, typename T, typename V> void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&) { v.clear(); unsigned int nSize = ReadCompactSize(is); unsigned int i = 0; unsigned int nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); if (nMid > nSize) nMid = nSize; v.resize_uninitialized(nMid); for (; i < nMid; ++i) Unserialize(is, v[i]); } } template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v) { Unserialize_impl(is, v, T()); } /** * vector */ template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&) { WriteCompactSize(os, v.size()); if (!v.empty()) os.write((char*)v.data(), v.size() * sizeof(T)); } template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const bool&) { // A special case for std::vector<bool>, as dereferencing // std::vector<bool>::const_iterator does not result in a const bool& // due to std::vector's special casing for bool arguments. WriteCompactSize(os, v.size()); for (bool elem : v) { ::Serialize(os, elem); } } template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&) { WriteCompactSize(os, v.size()); for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi) ::Serialize(os, (*vi)); } template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v) { Serialize_impl(os, v, T()); } template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&) { // Limit size per read so bogus size value won't cause out of memory v.clear(); unsigned int nSize = ReadCompactSize(is); unsigned int i = 0; while (i < nSize) { unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char*)&v[i], blk * sizeof(T)); i += blk; } } template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&) { v.clear(); unsigned int nSize = ReadCompactSize(is); unsigned int i = 0; unsigned int nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); if (nMid > nSize) nMid = nSize; v.resize(nMid); for (; i < nMid; i++) Unserialize(is, v[i]); } } template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v) { Unserialize_impl(is, v, T()); } /** * pair */ template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item) { Serialize(os, item.first); Serialize(os, item.second); } template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item) { Unserialize(is, item.first); Unserialize(is, item.second); } /** * map */ template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m) { WriteCompactSize(os, m.size()); for (const auto& entry : m) Serialize(os, entry); } template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m) { m.clear(); unsigned int nSize = ReadCompactSize(is); typename std::map<K, T, Pred, A>::iterator mi = m.begin(); for (unsigned int i = 0; i < nSize; i++) { std::pair<K, T> item; Unserialize(is, item); mi = m.insert(mi, item); } } /** * set */ template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m) { WriteCompactSize(os, m.size()); for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it) Serialize(os, (*it)); } template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m) { m.clear(); unsigned int nSize = ReadCompactSize(is); typename std::set<K, Pred, A>::iterator it = m.begin(); for (unsigned int i = 0; i < nSize; i++) { K key; Unserialize(is, key); it = m.insert(it, key); } } /** * unique_ptr */ template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p) { Serialize(os, *p); } template<typename Stream, typename T> void Unserialize(Stream& is, std::unique_ptr<const T>& p) { p.reset(new T(deserialize, is)); } /** * shared_ptr */ template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p) { Serialize(os, *p); } template<typename Stream, typename T> void Unserialize(Stream& is, std::shared_ptr<const T>& p) { p = std::make_shared<const T>(deserialize, is); } /** * Support for ADD_SERIALIZE_METHODS and READWRITE macro */ struct CSerActionSerialize { constexpr bool ForRead() const { return false; } }; struct CSerActionUnserialize { constexpr bool ForRead() const { return true; } }; /* ::GetSerializeSize implementations * * Computing the serialized size of objects is done through a special stream * object of type CSizeComputer, which only records the number of bytes written * to it. * * If your Serialize or SerializationOp method has non-trivial overhead for * serialization, it may be worthwhile to implement a specialized version for * CSizeComputer, which uses the s.seek() method to record bytes that would * be written instead. */ class CSizeComputer { protected: size_t nSize; const int nVersion; public: explicit CSizeComputer(int nVersionIn) : nSize(0), nVersion(nVersionIn) {} void write(const char *psz, size_t _nSize) { this->nSize += _nSize; } /** Pretend _nSize bytes are written, without specifying them. */ void seek(size_t _nSize) { this->nSize += _nSize; } template<typename T> CSizeComputer& operator<<(const T& obj) { ::Serialize(*this, obj); return (*this); } size_t size() const { return nSize; } int GetVersion() const { return nVersion; } }; template<typename Stream> void SerializeMany(Stream& s) { } template<typename Stream, typename Arg, typename... Args> void SerializeMany(Stream& s, const Arg& arg, const Args&... args) { ::Serialize(s, arg); ::SerializeMany(s, args...); } template<typename Stream> inline void UnserializeMany(Stream& s) { } template<typename Stream, typename Arg, typename... Args> inline void UnserializeMany(Stream& s, Arg&& arg, Args&&... args) { ::Unserialize(s, arg); ::UnserializeMany(s, args...); } template<typename Stream, typename... Args> inline void SerReadWriteMany(Stream& s, CSerActionSerialize ser_action, const Args&... args) { ::SerializeMany(s, args...); } template<typename Stream, typename... Args> inline void SerReadWriteMany(Stream& s, CSerActionUnserialize ser_action, Args&&... args) { ::UnserializeMany(s, args...); } template<typename I> inline void WriteVarInt(CSizeComputer &s, I n) { s.seek(GetSizeOfVarInt<I>(n)); } inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize) { s.seek(GetSizeOfCompactSize(nSize)); } template <typename T> size_t GetSerializeSize(const T& t, int nVersion = 0) { return (CSizeComputer(nVersion) << t).size(); } template <typename... T> size_t GetSerializeSizeMany(int nVersion, const T&... t) { CSizeComputer sc(nVersion); SerializeMany(sc, t...); return sc.size(); } #endif // BITCOIN_SERIALIZE_H