#include #include #include #include #include // #define VERIFY_MAGNITUDE 1 namespace secp256k1 { /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular, * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations * accept any input with magnitude at most M, and have different rules for propagating magnitude to their * output. */ class FieldElem { private: // X = sum(i=0..4, elem[i]*2^52) uint64_t n[5]; #ifdef VERIFY_MAGNITUDE int magnitude; #endif public: /** Creates a constant field element. Magnitude=1 */ FieldElem(int x = 0) { n[0] = x; n[1] = n[2] = n[3] = n[4] = 0; #ifdef VERIFY_MAGNITUDE magnitude = 1; #endif } /** Normalizes the internal representation entries. Magnitude=1 */ void Normalize() { uint64_t c; if (n[0] > 0xFFFFFFFFFFFFFULL || n[1] > 0xFFFFFFFFFFFFFULL || n[2] > 0xFFFFFFFFFFFFFULL || n[3] > 0xFFFFFFFFFFFFFULL || n[4] > 0xFFFFFFFFFFFFULL) { c = n[0]; uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[1]; uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[2]; uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[3]; uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + n[4]; uint64_t t4 = c & 0x0FFFFFFFFFFFFULL; c >>= 48; if (c) { c = c * 0x1000003D1ULL + t0; t0 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t1; t1 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t2; t2 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t3; t3 = c & 0xFFFFFFFFFFFFFULL; c = (c >> 52) + t4; t4 = c & 0x0FFFFFFFFFFFFULL; c >>= 48; } n[0] = t0; n[1] = t1; n[2] = t2; n[3] = t3; n[4] = t4; } if (n[4] == 0xFFFFFFFFFFFFULL && n[3] == 0xFFFFFFFFFFFFFULL && n[2] == 0xFFFFFFFFFFFFFULL && n[1] == 0xFFFFFFFFFFFFF && n[0] >= 0xFFFFEFFFFFC2FULL) { n[4] = 0; n[3] = 0; n[2] = 0; n[1] = 0; n[0] -= 0xFFFFEFFFFFC2FULL; } #ifdef VERIFY_MAGNITUDE magnitude = 1; #endif } bool IsZero() { Normalize(); return n[0] == 0 && n[1] == 0 && n[2] == 0 && n[3] == 0 && n[4] == 0; } bool friend operator==(FieldElem &a, FieldElem &b) { a.Normalize(); b.Normalize(); return a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2] && a.n[3] == b.n[3] && a.n[4] == b.n[4]; } void Get(uint64_t *out) { Normalize(); out[0] = n[0] | (n[1] << 52); out[1] = (n[1] >> 12) | (n[2] << 40); out[2] = (n[2] >> 24) | (n[3] << 28); out[3] = (n[3] >> 36) | (n[4] << 16); } void Set(const uint64_t *in) { n[0] = in[0] & 0xFFFFFFFFFFFFFULL; n[1] = ((in[0] >> 52) | (in[1] << 12)) & 0xFFFFFFFFFFFFFULL; n[2] = ((in[1] >> 40) | (in[2] << 24)) & 0xFFFFFFFFFFFFFULL; n[3] = ((in[2] >> 28) | (in[3] << 36)) & 0xFFFFFFFFFFFFFULL; n[4] = (in[3] >> 16); #ifdef VERIFY_MAGNITUDE magnitude = 1; #endif } /** Set a FieldElem to be the negative of another. Increases magnitude by one. */ void SetNeg(const FieldElem &a, int magnitudeIn) { #ifdef VERIFY_MAGNITUDE assert(a.magnitude <= magnitudeIn); magnitude = magnitudeIn + 1; #endif n[0] = 0xFFFFEFFFFFC2FULL * (magnitudeIn + 1) - a.n[0]; n[1] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[1]; n[2] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[2]; n[3] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[3]; n[4] = 0x0FFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[4]; } /** Multiplies this FieldElem with an integer constant. Magnitude is multiplied by v */ void operator*=(int v) { #ifdef VERIFY_MAGNITUDE magnitude *= v; #endif n[0] *= v; n[1] *= v; n[2] *= v; n[3] *= v; n[4] *= v; } void operator+=(const FieldElem &a) { #ifdef VERIFY_MAGNITUDE magnitude += a.magnitude; #endif n[0] += a.n[0]; n[1] += a.n[1]; n[2] += a.n[2]; n[3] += a.n[3]; n[4] += a.n[4]; } /** Set this FieldElem to be the multiplication of two others. Magnitude=1 */ void SetMult(const FieldElem &a, const FieldElem &b) { #ifdef VERIFY_MAGNITUDE assert(a.magnitude <= 8); assert(b.magnitude <= 8); #endif __int128 c = (__int128)a.n[0] * b.n[0]; uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 c = c + (__int128)a.n[0] * b.n[1] + (__int128)a.n[1] * b.n[0]; uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF c = c + (__int128)a.n[0] * b.n[2] + (__int128)a.n[1] * b.n[1] + (__int128)a.n[2] * b.n[0]; uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 c = c + (__int128)a.n[0] * b.n[3] + (__int128)a.n[1] * b.n[2] + (__int128)a.n[2] * b.n[1] + (__int128)a.n[3] * b.n[0]; uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 c = c + (__int128)a.n[0] * b.n[4] + (__int128)a.n[1] * b.n[3] + (__int128)a.n[2] * b.n[2] + (__int128)a.n[3] * b.n[1] + (__int128)a.n[4] * b.n[0]; uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E c = c + (__int128)a.n[1] * b.n[4] + (__int128)a.n[2] * b.n[3] + (__int128)a.n[3] * b.n[2] + (__int128)a.n[4] * b.n[1]; uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE c = c + (__int128)a.n[2] * b.n[4] + (__int128)a.n[3] * b.n[3] + (__int128)a.n[4] * b.n[2]; uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE c = c + (__int128)a.n[3] * b.n[4] + (__int128)a.n[4] * b.n[3]; uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE c = c + (__int128)a.n[4] * b.n[4]; uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E uint64_t t9 = c; c = t0 + (__int128)t5 * 0x1000003D10ULL; t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t1 + (__int128)t6 * 0x1000003D10ULL; t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t2 + (__int128)t7 * 0x1000003D10ULL; n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t3 + (__int128)t8 * 0x1000003D10ULL; n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t4 + (__int128)t9 * 0x1000003D10ULL; n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 c = t0 + (__int128)c * 0x1000003D1ULL; n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 n[1] = t1 + c; #ifdef VERIFY_MAGNITUDE magnitude = 1; #endif } /** Set this FieldElem to be the square of another. Magnitude=1 */ void SetSquare(const FieldElem &a) { #ifdef VERIFY_MAGNITUDE assert(a.magnitude <= 8); #endif __int128 c = (__int128)a.n[0] * a.n[0]; uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0 c = c + (__int128)(a.n[0]*2) * a.n[1]; uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF c = c + (__int128)(a.n[0]*2) * a.n[2] + (__int128)a.n[1] * a.n[1]; uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0 c = c + (__int128)(a.n[0]*2) * a.n[3] + (__int128)(a.n[1]*2) * a.n[2]; uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280 c = c + (__int128)(a.n[0]*2) * a.n[4] + (__int128)(a.n[1]*2) * a.n[3] + (__int128)a.n[2] * a.n[2]; uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E c = c + (__int128)(a.n[1]*2) * a.n[4] + (__int128)(a.n[2]*2) * a.n[3]; uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE c = c + (__int128)(a.n[2]*2) * a.n[4] + (__int128)a.n[3] * a.n[3]; uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE c = c + (__int128)(a.n[3]*2) * a.n[4]; uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE c = c + (__int128)a.n[4] * a.n[4]; uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E uint64_t t9 = c; c = t0 + (__int128)t5 * 0x1000003D10ULL; t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t1 + (__int128)t6 * 0x1000003D10ULL; t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t2 + (__int128)t7 * 0x1000003D10ULL; n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t3 + (__int128)t8 * 0x1000003D10ULL; n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10 c = c + t4 + (__int128)t9 * 0x1000003D10ULL; n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110 c = t0 + (__int128)c * 0x1000003D1ULL; n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008 n[1] = t1 + c; #ifdef VERIFY_MAGNITUDE assert(a.magnitude <= 8); #endif } /** Set this to be the (modular) square root of another FieldElem. Magnitude=1 */ void SetSquareRoot(const FieldElem &a) { // calculate a^p, with p={15,780,1022,1023} FieldElem a2; a2.SetSquare(a); FieldElem a3; a3.SetMult(a2,a); FieldElem a6; a6.SetSquare(a3); FieldElem a12; a12.SetSquare(a6); FieldElem a15; a15.SetMult(a12,a3); FieldElem a30; a30.SetSquare(a15); FieldElem a60; a60.SetSquare(a30); FieldElem a120; a120.SetSquare(a60); FieldElem a240; a240.SetSquare(a120); FieldElem a255; a255.SetMult(a240,a15); FieldElem a510; a510.SetSquare(a255); FieldElem a750; a750.SetMult(a510,a240); FieldElem a780; a780.SetMult(a750,a30); FieldElem a1020; a1020.SetSquare(a510); FieldElem a1022; a1022.SetMult(a1020,a2); FieldElem a1023; a1023.SetMult(a1022,a); FieldElem x = a15; for (int i=0; i<21; i++) { for (int j=0; j<10; j++) x.SetSquare(x); x.SetMult(x,a1023); } for (int j=0; j<10; j++) x.SetSquare(x); x.SetMult(x,a1022); for (int i=0; i<2; i++) { for (int j=0; j<10; j++) x.SetSquare(x); x.SetMult(x,a1023); } for (int j=0; j<10; j++) x.SetSquare(x); SetMult(x,a780); } bool IsOdd() { Normalize(); return n[0] & 1; } /** Set this to be the (modular) inverse of another FieldElem. Magnitude=1 */ void SetInverse(const FieldElem &a) { // calculate a^p, with p={45,63,1019,1023} FieldElem a2; a2.SetSquare(a); FieldElem a3; a3.SetMult(a2,a); FieldElem a4; a4.SetSquare(a2); FieldElem a5; a5.SetMult(a4,a); FieldElem a10; a10.SetSquare(a5); FieldElem a11; a11.SetMult(a10,a); FieldElem a21; a21.SetMult(a11,a10); FieldElem a42; a42.SetSquare(a21); FieldElem a45; a45.SetMult(a42,a3); FieldElem a63; a63.SetMult(a42,a21); FieldElem a126; a126.SetSquare(a63); FieldElem a252; a252.SetSquare(a126); FieldElem a504; a504.SetSquare(a252); FieldElem a1008; a1008.SetSquare(a504); FieldElem a1019; a1019.SetMult(a1008,a11); FieldElem a1023; a1023.SetMult(a1019,a4); FieldElem x = a63; for (int i=0; i<21; i++) { for (int j=0; j<10; j++) x.SetSquare(x); x.SetMult(x,a1023); } for (int j=0; j<10; j++) x.SetSquare(x); x.SetMult(x,a1019); for (int i=0; i<2; i++) { for (int j=0; j<10; j++) x.SetSquare(x); x.SetMult(x,a1023); } for (int j=0; j<10; j++) x.SetSquare(x); SetMult(x,a45); } std::string ToString() { uint64_t tmp[4]; Get(tmp); std::string ret; for (int i=63; i>=0; i--) { int val = (tmp[i/16] >> ((i%16)*4)) & 0xF; static const char *c = "0123456789ABCDEF"; ret += c[val]; } return ret; } void SetHex(const std::string &str) { uint64_t tmp[4] = {0,0,0,0}; static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0, 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0}; for (int i=0; i<64; i++) { if (str.length() > (63-i)) tmp[i/16] |= (uint64_t)cvt[(unsigned char)str[63-i]] << ((i%16)*4); } Set(tmp); } }; class GroupElem { protected: bool fInfinity; FieldElem x; FieldElem y; public: /** Creates the point at infinity */ GroupElem() { fInfinity = true; } /** Creates the point with given affine coordinates */ GroupElem(const FieldElem &xin, const FieldElem &yin) { fInfinity = false; x = xin; y = yin; } /** Checks whether this is the point at infinity */ bool IsInfinity() const { return fInfinity; } void SetNeg(GroupElem &p) { fInfinity = p.fInfinity; x = p.x; p.y.Normalize(); y.SetNeg(p.y, 1); } std::string ToString() { if (fInfinity) return "(inf)"; return "(" + x.ToString() + "," + y.ToString() + ")"; } friend class GroupElemJac; }; class GroupElemJac : public GroupElem { protected: FieldElem z; public: /** Creates the point at infinity */ GroupElemJac() : GroupElem(), z(1) {} /** Creates the point with given affine coordinates */ GroupElemJac(const FieldElem &xin, const FieldElem &yin) : GroupElem(xin,yin), z(1) {} /** Checks whether this is a non-infinite point on the curve */ bool IsValid() { if (IsInfinity()) return false; // y^2 = x^3 + 7 // (Y/Z^3)^2 = (X/Z^2)^3 + 7 // Y^2 / Z^6 = X^3 / Z^6 + 7 // Y^2 = X^3 + 7*Z^6 FieldElem y2; y2.SetSquare(y); FieldElem x3; x3.SetSquare(x); x3.SetMult(x3,x); FieldElem z2; z2.SetSquare(z); FieldElem z6; z6.SetSquare(z2); z6.SetMult(z6,z2); z6 *= 7; x3 += z6; return y2 == x3; } /** Returns the affine coordinates of this point */ void GetAffine(GroupElem &aff) { z.SetInverse(z); FieldElem z2; z2.SetSquare(z); FieldElem z3; z3.SetMult(z,z2); x.SetMult(x,z2); y.SetMult(y,z3); z = FieldElem(1); aff.fInfinity = false; aff.x = x; aff.y = y; } /** Sets this point to have a given X coordinate & given Y oddness */ void SetCompressed(const FieldElem &xin, bool fOdd) { x = xin; FieldElem x2; x2.SetSquare(x); FieldElem x3; x3.SetMult(x,x2); fInfinity = false; FieldElem c(7); c += x3; y.SetSquareRoot(c); z = FieldElem(1); if (y.IsOdd() != fOdd) y.SetNeg(y,1); } /** Sets this point to be the EC double of another */ void SetDouble(const GroupElemJac &p) { if (p.fInfinity || y.IsZero()) { fInfinity = true; return; } FieldElem t1,t2,t3,t4,t5; z.SetMult(p.y,p.z); z *= 2; // Z' = 2*Y*Z (2) t1.SetSquare(p.x); t1 *= 3; // T1 = 3*X^2 (3) t2.SetSquare(t1); // T2 = 9*X^4 (1) t3.SetSquare(p.y); t3 *= 2; // T3 = 2*Y^2 (2) t4.SetSquare(t3); t4 *= 2; // T4 = 8*Y^4 (2) t3.SetMult(p.x,t3); // T3 = 2*X*Y^2 (1) x = t3; x *= 4; // X' = 8*X*Y^2 (4) x.SetNeg(x,4); // X' = -8*X*Y^2 (5) x += t2; // X' = 9*X^4 - 8*X*Y^2 (6) t2.SetNeg(t2,1); // T2 = -9*X^4 (2) t3 *= 6; // T3 = 12*X*Y^2 (6) t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8) y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) t2.SetNeg(t4,2); // T2 = -8*Y^4 (3) y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) } /** Sets this point to be the EC addition of two others */ void SetAdd(const GroupElemJac &p, const GroupElemJac &q) { if (p.fInfinity) { *this = q; return; } if (q.fInfinity) { *this = p; return; } fInfinity = false; const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z; FieldElem z22; z22.SetSquare(z2); FieldElem z12; z12.SetSquare(z1); FieldElem u1; u1.SetMult(x1, z22); FieldElem u2; u2.SetMult(x2, z12); FieldElem s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2); FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1); if (u1 == u2) { if (s1 == s2) { SetDouble(p); } else { fInfinity = true; } return; } FieldElem h; h.SetNeg(u1,1); h += u2; FieldElem r; r.SetNeg(s1,1); r += s2; FieldElem r2; r2.SetSquare(r); FieldElem h2; h2.SetSquare(h); FieldElem h3; h3.SetMult(h,h2); z.SetMult(z1,z2); z.SetMult(z, h); FieldElem t; t.SetMult(u1,h2); x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2; y.SetNeg(x,5); y += t; y.SetMult(y,r); h3.SetMult(h3,s1); h3.SetNeg(h3,1); y += h3; } /** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */ void SetAdd(const GroupElemJac &p, const GroupElem &q) { if (p.fInfinity) { x = q.x; y = q.y; fInfinity = q.fInfinity; z = FieldElem(1); return; } if (q.fInfinity) { *this = p; return; } fInfinity = false; const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y; FieldElem z12; z12.SetSquare(z1); FieldElem u1 = x1; u1.Normalize(); FieldElem u2; u2.SetMult(x2, z12); FieldElem s1 = y1; s1.Normalize(); FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1); if (u1 == u2) { if (s1 == s2) { SetDouble(p); } else { fInfinity = true; } return; } FieldElem h; h.SetNeg(u1,1); h += u2; FieldElem r; r.SetNeg(s1,1); r += s2; FieldElem r2; r2.SetSquare(r); FieldElem h2; h2.SetSquare(h); FieldElem h3; h3.SetMult(h,h2); z = p.z; z.SetMult(z, h); FieldElem t; t.SetMult(u1,h2); x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2; y.SetNeg(x,5); y += t; y.SetMult(y,r); h3.SetMult(h3,s1); h3.SetNeg(h3,1); y += h3; } std::string ToString() { GroupElem aff; GetAffine(aff); return aff.ToString(); } }; } using namespace secp256k1; int main() { FieldElem f1,f2; f1.SetHex("8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004"); for (int i=0; i<1000000; i++) { f1.SetInverse(f1); f1 *= 2; } return 0; }