#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from decimal import Decimal import math from test_framework.test_framework import BitcoinTestFramework from test_framework.key import ECKey from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTxOut, MAX_BLOCK_BASE_SIZE, MAX_MONEY, tx_from_hex, ) from test_framework.script import ( hash160, CScript, OP_0, OP_2, OP_3, OP_CHECKMULTISIG, OP_EQUAL, OP_HASH160, OP_RETURN, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class MempoolAcceptanceTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-txindex','-permitbaremultisig=0', ]] * self.num_nodes self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) for r in result_test: r.pop('wtxid') # Skip check for now assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 assert_equal(node.getblockcount(), 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) coins = node.listunspent() self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain between 1 and 25 transactions.', lambda: node.testmempoolaccept(rawtxs=['ff22']*26)) assert_raises_rpc_error(-8, 'Array must contain between 1 and 25 transactions.', lambda: node.testmempoolaccept(rawtxs=[])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = coins.pop() # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, maxfeerate=0) node.generate(1) self.mempool_size = 0 self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': 'txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = Decimal('0.000007') raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): Decimal('0.3') - fee}], ))['hex'] tx = tx_from_hex(raw_tx_0) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee}}], rawtxs=[raw_tx_0], ) self.log.info('A final transaction not in the mempool') coin = coins.pop() # Pick a random coin(base) to spend output_amount = Decimal('0.025') raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}], # SEQUENCE_FINAL outputs=[{node.getnewaddress(): output_amount}], locktime=node.getblockcount() + 2000, # Can be anything ))['hex'] tx = tx_from_hex(raw_tx_final) fee_expected = coin['amount'] - output_amount self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee_expected}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0) self.mempool_size += 1 self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size += 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx = tx_from_hex(raw_tx_0) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] tx = tx_from_hex(raw_tx_0) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': (2 * fee)}}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0) # take original raw_tx_0 tx = tx_from_hex(raw_tx_0) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'txn-mempool-conflict'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with missing inputs, that never existed') tx = tx_from_hex(raw_tx_0) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx = tx_from_hex(raw_tx_0) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, maxfeerate=0) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx = tx_from_hex(raw_tx_reference) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': { 'base': Decimal('0.1') - Decimal('0.05')}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with no outputs') tx = tx_from_hex(raw_tx_reference) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx = tx_from_hex(node.signrawtransactionwithwallet(tx.serialize().hex())['hex']) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-empty'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A really large transaction') tx = tx_from_hex(raw_tx_reference) tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-oversize'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with negative output value') tx = tx_from_hex(raw_tx_reference) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-negative'}], rawtxs=[tx.serialize().hex()], ) # The following two validations prevent overflow of the output amounts (see CVE-2010-5139). self.log.info('A transaction with too large output value') tx = tx_from_hex(raw_tx_reference) tx.vout[0].nValue = MAX_MONEY + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with too large sum of output values') tx = tx_from_hex(raw_tx_reference) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = MAX_MONEY self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-txouttotal-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with duplicate inputs') tx = tx_from_hex(raw_tx_reference) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-inputs-duplicate'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx = tx_from_hex(raw_tx_coinbase_spent) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'coinbase'}], rawtxs=[tx.serialize().hex()], ) self.log.info('Some nonstandard transactions') tx = tx_from_hex(raw_tx_reference) tx.nVersion = 3 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'version'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptpubkey'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) key = ECKey() key.generate() pubkey = key.get_pubkey().get_bytes() tx.vout[0].scriptPubKey = CScript([OP_2, pubkey, pubkey, pubkey, OP_3, OP_CHECKMULTISIG]) # Some bare multisig script (2-of-3) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bare-multisig'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-not-pushonly'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vin[0].scriptSig = CScript([b'a' * 1648]) # Some too large scriptSig (>1650 bytes) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-size'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL])) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'tx-size'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'dust'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'multi-op-return'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A timelocked transaction') tx = tx_from_hex(raw_tx_reference) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-final'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx = tx_from_hex(raw_tx_reference) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-BIP68-final'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) if __name__ == '__main__': MempoolAcceptanceTest().main()