#!/usr/bin/env python3 # Copyright (c) 2014-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test descendant package tracking code.""" from decimal import Decimal from test_framework.blocktools import COINBASE_MATURITY from test_framework.messages import COIN from test_framework.p2p import P2PTxInvStore from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, chain_transaction, ) # default limits DEFAULT_ANCESTOR_LIMIT = 25 DEFAULT_DESCENDANT_LIMIT = 25 # custom limits for node1 CUSTOM_ANCESTOR_LIMIT = 5 CUSTOM_DESCENDANT_LIMIT = 10 assert CUSTOM_DESCENDANT_LIMIT >= CUSTOM_ANCESTOR_LIMIT class MempoolPackagesTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.extra_args = [ [ "-maxorphantx=1000", "-whitelist=noban@127.0.0.1", # immediate tx relay ], [ "-maxorphantx=1000", "-limitancestorcount={}".format(CUSTOM_ANCESTOR_LIMIT), "-limitdescendantcount={}".format(CUSTOM_DESCENDANT_LIMIT), ], ] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Mine some blocks and have them mature. peer_inv_store = self.nodes[0].add_p2p_connection(P2PTxInvStore()) # keep track of invs self.generate(self.nodes[0], COINBASE_MATURITY + 1) utxo = self.nodes[0].listunspent(10) txid = utxo[0]['txid'] vout = utxo[0]['vout'] value = utxo[0]['amount'] assert 'ancestorcount' not in utxo[0] assert 'ancestorsize' not in utxo[0] assert 'ancestorfees' not in utxo[0] fee = Decimal("0.0001") # DEFAULT_ANCESTOR_LIMIT transactions off a confirmed tx should be fine chain = [] witness_chain = [] ancestor_vsize = 0 ancestor_fees = Decimal(0) for i in range(DEFAULT_ANCESTOR_LIMIT): (txid, sent_value) = chain_transaction(self.nodes[0], [txid], [0], value, fee, 1) value = sent_value chain.append(txid) # We need the wtxids to check P2P announcements witnesstx = self.nodes[0].gettransaction(txid=txid, verbose=True)['decoded'] witness_chain.append(witnesstx['hash']) # Check that listunspent ancestor{count, size, fees} yield the correct results wallet_unspent = self.nodes[0].listunspent(minconf=0) this_unspent = next(utxo_info for utxo_info in wallet_unspent if utxo_info['txid'] == txid) assert_equal(this_unspent['ancestorcount'], i + 1) ancestor_vsize += self.nodes[0].getrawtransaction(txid=txid, verbose=True)['vsize'] assert_equal(this_unspent['ancestorsize'], ancestor_vsize) ancestor_fees -= self.nodes[0].gettransaction(txid=txid)['fee'] assert_equal(this_unspent['ancestorfees'], ancestor_fees * COIN) # Wait until mempool transactions have passed initial broadcast (sent inv and received getdata) # Otherwise, getrawmempool may be inconsistent with getmempoolentry if unbroadcast changes in between peer_inv_store.wait_for_broadcast(witness_chain) # Check mempool has DEFAULT_ANCESTOR_LIMIT transactions in it, and descendant and ancestor # count and fees should look correct mempool = self.nodes[0].getrawmempool(True) assert_equal(len(mempool), DEFAULT_ANCESTOR_LIMIT) descendant_count = 1 descendant_fees = 0 descendant_vsize = 0 assert_equal(ancestor_vsize, sum([mempool[tx]['vsize'] for tx in mempool])) ancestor_count = DEFAULT_ANCESTOR_LIMIT assert_equal(ancestor_fees, sum([mempool[tx]['fees']['base'] for tx in mempool])) descendants = [] ancestors = list(chain) for x in reversed(chain): # Check that getmempoolentry is consistent with getrawmempool entry = self.nodes[0].getmempoolentry(x) assert_equal(entry, mempool[x]) # Check that gettxspendingprevout is consistent with getrawmempool witnesstx = self.nodes[0].gettransaction(txid=x, verbose=True)['decoded'] for tx_in in witnesstx["vin"]: spending_result = self.nodes[0].gettxspendingprevout([ {'txid' : tx_in["txid"], 'vout' : tx_in["vout"]} ]) assert_equal(spending_result, [ {'txid' : tx_in["txid"], 'vout' : tx_in["vout"], 'spendingtxid' : x} ]) # Check that the descendant calculations are correct assert_equal(entry['descendantcount'], descendant_count) descendant_fees += entry['fees']['base'] assert_equal(entry['fees']['modified'], entry['fees']['base']) assert_equal(entry['fees']['descendant'], descendant_fees) descendant_vsize += entry['vsize'] assert_equal(entry['descendantsize'], descendant_vsize) descendant_count += 1 # Check that ancestor calculations are correct assert_equal(entry['ancestorcount'], ancestor_count) assert_equal(entry['fees']['ancestor'], ancestor_fees) assert_equal(entry['ancestorsize'], ancestor_vsize) ancestor_vsize -= entry['vsize'] ancestor_fees -= entry['fees']['base'] ancestor_count -= 1 # Check that parent/child list is correct assert_equal(entry['spentby'], descendants[-1:]) assert_equal(entry['depends'], ancestors[-2:-1]) # Check that getmempooldescendants is correct assert_equal(sorted(descendants), sorted(self.nodes[0].getmempooldescendants(x))) # Check getmempooldescendants verbose output is correct for descendant, dinfo in self.nodes[0].getmempooldescendants(x, True).items(): assert_equal(dinfo['depends'], [chain[chain.index(descendant)-1]]) if dinfo['descendantcount'] > 1: assert_equal(dinfo['spentby'], [chain[chain.index(descendant)+1]]) else: assert_equal(dinfo['spentby'], []) descendants.append(x) # Check that getmempoolancestors is correct ancestors.remove(x) assert_equal(sorted(ancestors), sorted(self.nodes[0].getmempoolancestors(x))) # Check that getmempoolancestors verbose output is correct for ancestor, ainfo in self.nodes[0].getmempoolancestors(x, True).items(): assert_equal(ainfo['spentby'], [chain[chain.index(ancestor)+1]]) if ainfo['ancestorcount'] > 1: assert_equal(ainfo['depends'], [chain[chain.index(ancestor)-1]]) else: assert_equal(ainfo['depends'], []) # Check that getmempoolancestors/getmempooldescendants correctly handle verbose=true v_ancestors = self.nodes[0].getmempoolancestors(chain[-1], True) assert_equal(len(v_ancestors), len(chain)-1) for x in v_ancestors.keys(): assert_equal(mempool[x], v_ancestors[x]) assert chain[-1] not in v_ancestors.keys() v_descendants = self.nodes[0].getmempooldescendants(chain[0], True) assert_equal(len(v_descendants), len(chain)-1) for x in v_descendants.keys(): assert_equal(mempool[x], v_descendants[x]) assert chain[0] not in v_descendants.keys() # Check that ancestor modified fees includes fee deltas from # prioritisetransaction self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=1000) ancestor_fees = 0 for x in chain: entry = self.nodes[0].getmempoolentry(x) ancestor_fees += entry['fees']['base'] assert_equal(entry['fees']['ancestor'], ancestor_fees + Decimal('0.00001')) # Undo the prioritisetransaction for later tests self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=-1000) # Check that descendant modified fees includes fee deltas from # prioritisetransaction self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=1000) descendant_fees = 0 for x in reversed(chain): entry = self.nodes[0].getmempoolentry(x) descendant_fees += entry['fees']['base'] assert_equal(entry['fees']['descendant'], descendant_fees + Decimal('0.00001')) # Adding one more transaction on to the chain should fail. assert_raises_rpc_error(-26, "too-long-mempool-chain", chain_transaction, self.nodes[0], [txid], [vout], value, fee, 1) # Check that prioritising a tx before it's added to the mempool works # First clear the mempool by mining a block. self.generate(self.nodes[0], 1) assert_equal(len(self.nodes[0].getrawmempool()), 0) # Prioritise a transaction that has been mined, then add it back to the # mempool by using invalidateblock. self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=2000) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # Keep node1's tip synced with node0 self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash()) # Now check that the transaction is in the mempool, with the right modified fee descendant_fees = 0 for x in reversed(chain): entry = self.nodes[0].getmempoolentry(x) descendant_fees += entry['fees']['base'] if (x == chain[-1]): assert_equal(entry['fees']['modified'], entry['fees']['base'] + Decimal("0.00002")) assert_equal(entry['fees']['descendant'], descendant_fees + Decimal("0.00002")) # Check that node1's mempool is as expected (-> custom ancestor limit) mempool0 = self.nodes[0].getrawmempool(False) mempool1 = self.nodes[1].getrawmempool(False) assert_equal(len(mempool1), CUSTOM_ANCESTOR_LIMIT) assert set(mempool1).issubset(set(mempool0)) for tx in chain[:CUSTOM_ANCESTOR_LIMIT]: assert tx in mempool1 # TODO: more detailed check of node1's mempool (fees etc.) # check transaction unbroadcast info (should be false if in both mempools) mempool = self.nodes[0].getrawmempool(True) for tx in mempool: assert_equal(mempool[tx]['unbroadcast'], False) # TODO: test ancestor size limits # Now test descendant chain limits txid = utxo[1]['txid'] value = utxo[1]['amount'] vout = utxo[1]['vout'] transaction_package = [] tx_children = [] # First create one parent tx with 10 children (txid, sent_value) = chain_transaction(self.nodes[0], [txid], [vout], value, fee, 10) parent_transaction = txid for i in range(10): transaction_package.append({'txid': txid, 'vout': i, 'amount': sent_value}) # Sign and send up to MAX_DESCENDANT transactions chained off the parent tx chain = [] # save sent txs for the purpose of checking node1's mempool later (see below) for _ in range(DEFAULT_DESCENDANT_LIMIT - 1): utxo = transaction_package.pop(0) (txid, sent_value) = chain_transaction(self.nodes[0], [utxo['txid']], [utxo['vout']], utxo['amount'], fee, 10) chain.append(txid) if utxo['txid'] is parent_transaction: tx_children.append(txid) for j in range(10): transaction_package.append({'txid': txid, 'vout': j, 'amount': sent_value}) mempool = self.nodes[0].getrawmempool(True) assert_equal(mempool[parent_transaction]['descendantcount'], DEFAULT_DESCENDANT_LIMIT) assert_equal(sorted(mempool[parent_transaction]['spentby']), sorted(tx_children)) for child in tx_children: assert_equal(mempool[child]['depends'], [parent_transaction]) # Sending one more chained transaction will fail utxo = transaction_package.pop(0) assert_raises_rpc_error(-26, "too-long-mempool-chain", chain_transaction, self.nodes[0], [utxo['txid']], [utxo['vout']], utxo['amount'], fee, 10) # Check that node1's mempool is as expected, containing: # - txs from previous ancestor test (-> custom ancestor limit) # - parent tx for descendant test # - txs chained off parent tx (-> custom descendant limit) self.wait_until(lambda: len(self.nodes[1].getrawmempool()) == CUSTOM_ANCESTOR_LIMIT + 1 + CUSTOM_DESCENDANT_LIMIT, timeout=10) mempool0 = self.nodes[0].getrawmempool(False) mempool1 = self.nodes[1].getrawmempool(False) assert set(mempool1).issubset(set(mempool0)) assert parent_transaction in mempool1 for tx in chain[:CUSTOM_DESCENDANT_LIMIT]: assert tx in mempool1 for tx in chain[CUSTOM_DESCENDANT_LIMIT:]: assert tx not in mempool1 # TODO: more detailed check of node1's mempool (fees etc.) # TODO: test descendant size limits # Test reorg handling # First, the basics: self.generate(self.nodes[0], 1) self.nodes[1].invalidateblock(self.nodes[0].getbestblockhash()) self.nodes[1].reconsiderblock(self.nodes[0].getbestblockhash()) # Now test the case where node1 has a transaction T in its mempool that # depends on transactions A and B which are in a mined block, and the # block containing A and B is disconnected, AND B is not accepted back # into node1's mempool because its ancestor count is too high. # Create 8 transactions, like so: # Tx0 -> Tx1 (vout0) # \--> Tx2 (vout1) -> Tx3 -> Tx4 -> Tx5 -> Tx6 -> Tx7 # # Mine them in the next block, then generate a new tx8 that spends # Tx1 and Tx7, and add to node1's mempool, then disconnect the # last block. # Create tx0 with 2 outputs utxo = self.nodes[0].listunspent() txid = utxo[0]['txid'] value = utxo[0]['amount'] vout = utxo[0]['vout'] send_value = (value - fee) / 2 inputs = [ {'txid' : txid, 'vout' : vout} ] outputs = {} for _ in range(2): outputs[self.nodes[0].getnewaddress()] = send_value rawtx = self.nodes[0].createrawtransaction(inputs, outputs) signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx) txid = self.nodes[0].sendrawtransaction(signedtx['hex']) tx0_id = txid value = send_value # Create tx1 tx1_id, _ = chain_transaction(self.nodes[0], [tx0_id], [0], value, fee, 1) # Create tx2-7 vout = 1 txid = tx0_id for _ in range(6): (txid, sent_value) = chain_transaction(self.nodes[0], [txid], [vout], value, fee, 1) vout = 0 value = sent_value # Mine these in a block self.generate(self.nodes[0], 1) # Now generate tx8, with a big fee inputs = [ {'txid' : tx1_id, 'vout': 0}, {'txid' : txid, 'vout': 0} ] outputs = { self.nodes[0].getnewaddress() : send_value + value - 4*fee } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx) txid = self.nodes[0].sendrawtransaction(signedtx['hex']) self.sync_mempools() # Now try to disconnect the tip on each node... self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash()) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) self.sync_blocks() if __name__ == '__main__': MempoolPackagesTest().main()