This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
fa587773e5 scripted-diff: Remove unused first argument to addUnchecked (MarcoFalke)
fe5c49766c tx pool: Use the entry's hash instead of the one passed to addUnchecked (MarcoFalke)
ddd395f968 Mark CTxMemPoolEntry members that should not be modified const (MarcoFalke)
Pull request description:
Several years ago the transaction hash was not cached. For optimization the hash was instead passed into `addUnchecked` to avoid re-calculating it. See f77654a0e9
Passing in the hash is now redundant and the argument can safely be removed.
Tree-SHA512: 0206b65c7a014295f67574120e8c5397bf1b1bd70c918ae1360ab093676f7f89a6f084fd2c7000a141baebfe63fe6f515559e38c4ac71810ba64f949f9c0467f
3fc20632a3 qt: Set BLOCK_CHAIN_SIZE = 220 (DrahtBot)
2b6a2f4a28 Regenerate manpages (DrahtBot)
eb7daf4d60 Update copyright headers to 2018 (DrahtBot)
Pull request description:
Some trivial maintenance to avoid having to do it again after the 0.17 branch off.
(The scripts to do this are in `./contrib/`)
Tree-SHA512: 16b2af45e0351b1c691c5311d48025dc6828079e98c2aa2e600dc5910ee8aa01858ca6c356538150dc46fe14c8819ed8ec8e4ec9a0f682b9950dd41bc50518fa
* inline performance critical code
* Average runtime is specified and used to calculate iterations.
* Console: show median of multiple runs
* plot: show box plot
* filter benchmarks
* specify scaling factor
* ignore src/test and src/bench in command line check script
* number of iterations instead of time
* Replaced runtime in BENCHMARK makro number of iterations.
* Added -? to bench_bitcoin
* Benchmark plotly.js URL, width, height can be customized
* Fixed incorrect precision warning
Fee estimation can just check its own mapMemPoolTxs to determine the same information. Note that now fee estimation for block processing must happen before those transactions are removed, but this shoudl be a speedup.
The new benchmarks exercise script validation, CCoinsDBView caching,
mempool eviction, and wallet coin selection code.
All of the benchmarks added here are extremely simple and don't
necessarily mirror common real world conditions or interesting
performance edge cases. Details about how specific benchmarks can be
improved are noted in comments.
Github-Issue: #7883