libsecp256k1's secp256k1_schnorrsig_sign only follows BIP340 exactly
if an aux_rand32 argument is passed. When no randomness is used
(as is the case in the current codebase here), there is no impact
on security between not providing aux_rand32 at all, or providing
an empty one. Yet, for repeatability/testability it is simpler
to always use an all-zero one.
79fd28cacb Adds verification step to Schnorr and ECDSA signing (amadeuszpawlik)
Pull request description:
As detailed in #22435, BIP340 defines that during Schnorr signing a verification should be done. This is so that potentially corrupt signage does not leak information about private keys used during the process. This is not followed today as no such verification step is being done. The same is valid for ECDSA signing functions `Sign` and `SignCompact`.
This PR adds this missing verification step to `SignSchnorr`, `Sign` and `SignCompact`.
ACKs for top commit:
sipa:
utACK 79fd28cacb
laanwj:
Code review ACK 79fd28cacb
theStack:
re-ACK 79fd28cacb
Tree-SHA512: 8fefa26caea577ae8631cc16c4e2f4cc6cfa1c7cf51d45a4a34165636ee290950617a17a19b4237c6f7a841db0e40fd5c36ad12ef43da82507c0e9fb9375ab82
As defined in BIP340, a verification step should be executed after
`secp256k1_schnorrsig_sign` to ensure that a potentially corrupted
signature isn't used; using corrupted signatures could reveal
information about the private key used. This applies to ECSDA as
well.
Additionally clears schnorr signature if signing failed.
This makes calling code less verbose and less fragile. Also, by adding
the CKey::data() member function, it is now possible to call HexStr()
with a CKey object.
e306be7429 Use 72 byte dummy signatures when watching only inputs may be used (Andrew Chow)
48b1473c89 Use 71 byte signature for DUMMY_SIGNATURE_CREATOR (Andrew Chow)
18dfea0dd0 Always create 70 byte signatures with low R values (Andrew Chow)
Pull request description:
When creating signatures for transactions, always make one which has a 32 byte or smaller R and 32 byte or smaller S value. This results in signatures that are always less than 71 bytes (32 byte R + 32 byte S + 6 bytes DER + 1 byte sighash) with low R values. In most cases, the signature will be 71 bytes.
Because R is not mutable in the same way that S is, a low R value can only be found by trying different nonces. RFC 6979 for deterministic nonce generation has the option to specify additional entropy, so we simply use that and add a uin32_t counter which we increment in order to try different nonces. Nonces are sill deterministically generated as the nonce used will the be the first one where the counter results in a nonce that results in a low R value. Because different nonces need to be tried, time to produce a signature does increase. On average, it takes twice as long to make a signature as two signatures need to be created, on average, to find one with a low R.
Having a fixed size signature makes size calculations easier and also saves half a byte of transaction size, on average.
DUMMY_SIGNATURE_CREATOR has been modified to produce 71 byte dummy signatures instead of 72 byte signatures.
Tree-SHA512: 3cd791505126ce92da7c631856a97ba0b59e87d9c132feff6e0eef1dc47768e81fbb38bfbe970371bedf9714b7f61a13a5fe9f30f962c81734092a4d19a4ef33
When extra entropy is not specified by the caller, CKey::Sign will
now always create a signature that has a low R value and is at most
70 bytes. The resulting signature on the stack will be 71 bytes when
the sighash byte is included.
Using low R signatures means that the resulting DER encoded signature
will never need to have additional padding to account for high R
values.
Replace these with vectors allocated from the secure allocator.
This avoids mlock syscall churn on stack pages, as well as makes
it possible to get rid of these functions.
Please review this commit and the previous one carefully that
no `sizeof(vectortype)` remains in the memcpys and memcmps usage
(ick!), and `.data()` or `&vec[x]` is used as appropriate instead of
&vec.