libsecp256k1 integration

This commit is contained in:
Pieter Wuille 2014-06-06 01:26:27 +02:00 committed by Cory Fields
parent 5566826635
commit fda3fed18a

View file

@ -5,15 +5,34 @@
#include "key.h" #include "key.h"
#include "crypto/sha2.h" #include "crypto/sha2.h"
#include <openssl/rand.h>
#ifdef USE_SECP256K1
#include <secp256k1.h>
#else
#include <openssl/bn.h> #include <openssl/bn.h>
#include <openssl/ecdsa.h> #include <openssl/ecdsa.h>
#include <openssl/obj_mac.h> #include <openssl/obj_mac.h>
#include <openssl/rand.h> #endif
// anonymous namespace with local implementation code (OpenSSL interaction) // anonymous namespace with local implementation code (OpenSSL interaction)
namespace { namespace {
#ifdef USE_SECP256K1
#include <secp256k1.h>
class CSecp256k1Init {
public:
CSecp256k1Init() {
secp256k1_start();
}
~CSecp256k1Init() {
secp256k1_stop();
}
};
static CSecp256k1Init instance_of_csecp256k1;
#else
// Generate a private key from just the secret parameter // Generate a private key from just the secret parameter
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key) int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
{ {
@ -334,6 +353,8 @@ public:
} }
}; };
#endif
int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) { int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) {
while (c1len > c2len) { while (c1len > c2len) {
if (*c1) if (*c1)
@ -398,10 +419,15 @@ void CKey::MakeNewKey(bool fCompressedIn) {
} }
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
#ifdef USE_SECP256K1
if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
#else
CECKey key; CECKey key;
if (!key.SetPrivKey(privkey)) if (!key.SetPrivKey(privkey))
return false; return false;
key.GetSecretBytes(vch); key.GetSecretBytes(vch);
#endif
fCompressed = fCompressedIn; fCompressed = fCompressedIn;
fValid = true; fValid = true;
return true; return true;
@ -409,99 +435,167 @@ bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
CPrivKey CKey::GetPrivKey() const { CPrivKey CKey::GetPrivKey() const {
assert(fValid); assert(fValid);
CPrivKey privkey;
#ifdef USE_SECP256K1
privkey.resize(279);
int privkeylen = 279;
int ret = secp256k1_ecdsa_privkey_export(begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed);
assert(ret);
privkey.resize(privkeylen);
#else
CECKey key; CECKey key;
key.SetSecretBytes(vch); key.SetSecretBytes(vch);
CPrivKey privkey;
key.GetPrivKey(privkey, fCompressed); key.GetPrivKey(privkey, fCompressed);
#endif
return privkey; return privkey;
} }
CPubKey CKey::GetPubKey() const { CPubKey CKey::GetPubKey() const {
assert(fValid); assert(fValid);
CPubKey pubkey;
#ifdef USE_SECP256K1
int clen = 65;
int ret = secp256k1_ecdsa_pubkey_create((unsigned char*)pubkey.begin(), &clen, begin(), fCompressed);
assert(ret);
assert(pubkey.IsValid());
assert((int)pubkey.size() == clen);
#else
CECKey key; CECKey key;
key.SetSecretBytes(vch); key.SetSecretBytes(vch);
CPubKey pubkey;
key.GetPubKey(pubkey, fCompressed); key.GetPubKey(pubkey, fCompressed);
#endif
return pubkey; return pubkey;
} }
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const { bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid) if (!fValid)
return false; return false;
#ifdef USE_SECP256K1
vchSig.resize(72);
int nSigLen = 72;
CKey nonce;
do {
nonce.MakeNewKey(true);
if (secp256k1_ecdsa_sign((const unsigned char*)&hash, 32, (unsigned char*)&vchSig[0], &nSigLen, begin(), nonce.begin()))
break;
} while(true);
vchSig.resize(nSigLen);
return true;
#else
CECKey key; CECKey key;
key.SetSecretBytes(vch); key.SetSecretBytes(vch);
return key.Sign(hash, vchSig); return key.Sign(hash, vchSig);
#endif
} }
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const { bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid) if (!fValid)
return false; return false;
CECKey key;
key.SetSecretBytes(vch);
vchSig.resize(65); vchSig.resize(65);
int rec = -1; int rec = -1;
#ifdef USE_SECP256K1
CKey nonce;
do {
nonce.MakeNewKey(true);
if (secp256k1_ecdsa_sign_compact((const unsigned char*)&hash, 32, &vchSig[1], begin(), nonce.begin(), &rec))
break;
} while(true);
#else
CECKey key;
key.SetSecretBytes(vch);
if (!key.SignCompact(hash, &vchSig[1], rec)) if (!key.SignCompact(hash, &vchSig[1], rec))
return false; return false;
#endif
assert(rec != -1); assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
return true; return true;
} }
bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) { bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
#ifdef USE_SECP256K1
if (!secp256k1_ecdsa_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size()))
return false;
#else
CECKey key; CECKey key;
if (!key.SetPrivKey(privkey, fSkipCheck)) if (!key.SetPrivKey(privkey, fSkipCheck))
return false; return false;
key.GetSecretBytes(vch); key.GetSecretBytes(vch);
#endif
fCompressed = vchPubKey.IsCompressed(); fCompressed = vchPubKey.IsCompressed();
fValid = true; fValid = true;
if (fSkipCheck) if (fSkipCheck)
return true; return true;
if (GetPubKey() != vchPubKey) if (GetPubKey() != vchPubKey)
return false; return false;
return true; return true;
} }
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
if (!IsValid()) if (!IsValid())
return false; return false;
#ifdef USE_SECP256K1
if (secp256k1_ecdsa_verify((const unsigned char*)&hash, 32, &vchSig[0], vchSig.size(), begin(), size()) != 1)
return false;
#else
CECKey key; CECKey key;
if (!key.SetPubKey(*this)) if (!key.SetPubKey(*this))
return false; return false;
if (!key.Verify(hash, vchSig)) if (!key.Verify(hash, vchSig))
return false; return false;
#endif
return true; return true;
} }
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) { bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
if (vchSig.size() != 65) if (vchSig.size() != 65)
return false; return false;
CECKey key; int recid = (vchSig[0] - 27) & 3;
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4)) bool fComp = (vchSig[0] - 27) & 4;
#ifdef USE_SECP256K1
int pubkeylen = 65;
if (!secp256k1_ecdsa_recover_compact((const unsigned char*)&hash, 32, &vchSig[1], (unsigned char*)begin(), &pubkeylen, fComp, recid))
return false; return false;
key.GetPubKey(*this, (vchSig[0] - 27) & 4); assert((int)size() == pubkeylen);
#else
CECKey key;
if (!key.Recover(hash, &vchSig[1], recid))
return false;
key.GetPubKey(*this, fComp);
#endif
return true; return true;
} }
bool CPubKey::IsFullyValid() const { bool CPubKey::IsFullyValid() const {
if (!IsValid()) if (!IsValid())
return false; return false;
#ifdef USE_SECP256K1
if (!secp256k1_ecdsa_pubkey_verify(begin(), size()))
return false;
#else
CECKey key; CECKey key;
if (!key.SetPubKey(*this)) if (!key.SetPubKey(*this))
return false; return false;
#endif
return true; return true;
} }
bool CPubKey::Decompress() { bool CPubKey::Decompress() {
if (!IsValid()) if (!IsValid())
return false; return false;
#ifdef USE_SECP256K1
int clen = size();
int ret = secp256k1_ecdsa_pubkey_decompress((unsigned char*)begin(), &clen);
assert(ret);
assert(clen == (int)size());
#else
CECKey key; CECKey key;
if (!key.SetPubKey(*this)) if (!key.SetPubKey(*this))
return false; return false;
key.GetPubKey(*this, false); key.GetPubKey(*this, false);
#endif
return true; return true;
} }
@ -531,7 +625,12 @@ bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild
BIP32Hash(cc, nChild, 0, begin(), out); BIP32Hash(cc, nChild, 0, begin(), out);
} }
memcpy(ccChild, out+32, 32); memcpy(ccChild, out+32, 32);
#ifdef USE_SECP256K1
memcpy((unsigned char*)keyChild.begin(), begin(), 32);
bool ret = secp256k1_ecdsa_privkey_tweak_add((unsigned char*)keyChild.begin(), out);
#else
bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out); bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out);
#endif
UnlockObject(out); UnlockObject(out);
keyChild.fCompressed = true; keyChild.fCompressed = true;
keyChild.fValid = ret; keyChild.fValid = ret;
@ -545,10 +644,15 @@ bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned i
unsigned char out[64]; unsigned char out[64];
BIP32Hash(cc, nChild, *begin(), begin()+1, out); BIP32Hash(cc, nChild, *begin(), begin()+1, out);
memcpy(ccChild, out+32, 32); memcpy(ccChild, out+32, 32);
#ifdef USE_SECP256K1
pubkeyChild = *this;
bool ret = secp256k1_ecdsa_pubkey_tweak_add((unsigned char*)pubkeyChild.begin(), pubkeyChild.size(), out);
#else
CECKey key; CECKey key;
bool ret = key.SetPubKey(*this); bool ret = key.SetPubKey(*this);
ret &= key.TweakPublic(out); ret &= key.TweakPublic(out);
key.GetPubKey(pubkeyChild, true); key.GetPubKey(pubkeyChild, true);
#endif
return ret; return ret;
} }
@ -629,6 +733,9 @@ bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const {
} }
bool ECC_InitSanityCheck() { bool ECC_InitSanityCheck() {
#ifdef USE_SECP256K1
return true;
#else
EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1); EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
if(pkey == NULL) if(pkey == NULL)
return false; return false;
@ -636,6 +743,7 @@ bool ECC_InitSanityCheck() {
// TODO Is there more EC functionality that could be missing? // TODO Is there more EC functionality that could be missing?
return true; return true;
#endif
} }