Merge bitcoin/bitcoin#28924: refactor: Remove unused and fragile string interface from arith_uint256

fa63f16018 test: Add uint256 string parse tests (MarcoFalke)
facf629ce8 refactor: Remove unused and fragile string interface from arith_uint256 (MarcoFalke)

Pull request description:

  The string interface (`base_uint(const std::string&)`, as well as `base_uint::SetHex`) is problematic for many reasons:

  * It is unused (except in test-only code).
  * It is redundant with the `uint256` string interface: `std::string -> uint256 -> UintToArith256`.
  * It is brittle, because it inherits the brittle `uint256` string interface, which is brittle due to the use of `c_str()` (embedded null will be treated as end-of string), etc ...

  Instead of fixing the interface, remove it since it is unused and redundant with `UintToArith256`.

ACKs for top commit:
  ajtowns:
    ACK fa63f16018
  TheCharlatan:
    ACK fa63f16018

Tree-SHA512: a95d5b938ffd0473361336bbf6be093d01265a626c50be1345ce2c5e582c0f3f73eb11af5fd1884019f59d7ba27e670ecffdb41d2c624ffb9aa63bd52b780e62
This commit is contained in:
fanquake 2023-12-07 15:44:38 +00:00
commit fcdb39d3ee
No known key found for this signature in database
GPG key ID: 2EEB9F5CC09526C1
5 changed files with 56 additions and 52 deletions

View file

@ -8,14 +8,7 @@
#include <uint256.h>
#include <crypto/common.h>
template <unsigned int BITS>
base_uint<BITS>::base_uint(const std::string& str)
{
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
SetHex(str);
}
#include <cassert>
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
@ -153,22 +146,6 @@ std::string base_uint<BITS>::GetHex() const
return b.GetHex();
}
template <unsigned int BITS>
void base_uint<BITS>::SetHex(const char* psz)
{
base_blob<BITS> b;
b.SetHex(psz);
for (int x = 0; x < this->WIDTH; ++x) {
this->pn[x] = ReadLE32(b.begin() + x*4);
}
}
template <unsigned int BITS>
void base_uint<BITS>::SetHex(const std::string& str)
{
SetHex(str.c_str());
}
template <unsigned int BITS>
std::string base_uint<BITS>::ToString() const
{

View file

@ -6,10 +6,10 @@
#ifndef BITCOIN_ARITH_UINT256_H
#define BITCOIN_ARITH_UINT256_H
#include <cstdint>
#include <cstring>
#include <limits>
#include <stdexcept>
#include <stdint.h>
#include <string>
class uint256;
@ -56,8 +56,6 @@ public:
pn[i] = 0;
}
explicit base_uint(const std::string& str);
base_uint operator~() const
{
base_uint ret;
@ -219,8 +217,6 @@ public:
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
std::string GetHex() const;
void SetHex(const char* psz);
void SetHex(const std::string& str);
std::string ToString() const;
unsigned int size() const
@ -247,7 +243,6 @@ public:
arith_uint256() {}
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
arith_uint256(uint64_t b) : base_uint<256>(b) {}
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
/**
* The "compact" format is a representation of a whole

View file

@ -22,6 +22,7 @@ static inline arith_uint256 arith_uint256V(const std::vector<unsigned char>& vch
{
return UintToArith256(uint256(vch));
}
static inline arith_uint256 arith_uint256S(const std::string& str) { return UintToArith256(uint256S(str)); }
const unsigned char R1Array[] =
"\x9c\x52\x4a\xdb\xcf\x56\x11\x12\x2b\x29\x12\x5e\x5d\x35\xd2\xd2"
@ -95,25 +96,25 @@ BOOST_AUTO_TEST_CASE( basics ) // constructors, equality, inequality
BOOST_CHECK(ZeroL == (OneL << 256));
// String Constructor and Copy Constructor
BOOST_CHECK(arith_uint256("0x"+R1L.ToString()) == R1L);
BOOST_CHECK(arith_uint256("0x"+R2L.ToString()) == R2L);
BOOST_CHECK(arith_uint256("0x"+ZeroL.ToString()) == ZeroL);
BOOST_CHECK(arith_uint256("0x"+OneL.ToString()) == OneL);
BOOST_CHECK(arith_uint256("0x"+MaxL.ToString()) == MaxL);
BOOST_CHECK(arith_uint256(R1L.ToString()) == R1L);
BOOST_CHECK(arith_uint256(" 0x"+R1L.ToString()+" ") == R1L);
BOOST_CHECK(arith_uint256("") == ZeroL);
BOOST_CHECK(R1L == arith_uint256(R1ArrayHex));
BOOST_CHECK(arith_uint256S("0x" + R1L.ToString()) == R1L);
BOOST_CHECK(arith_uint256S("0x" + R2L.ToString()) == R2L);
BOOST_CHECK(arith_uint256S("0x" + ZeroL.ToString()) == ZeroL);
BOOST_CHECK(arith_uint256S("0x" + OneL.ToString()) == OneL);
BOOST_CHECK(arith_uint256S("0x" + MaxL.ToString()) == MaxL);
BOOST_CHECK(arith_uint256S(R1L.ToString()) == R1L);
BOOST_CHECK(arith_uint256S(" 0x" + R1L.ToString() + " ") == R1L);
BOOST_CHECK(arith_uint256S("") == ZeroL);
BOOST_CHECK(R1L == arith_uint256S(R1ArrayHex));
BOOST_CHECK(arith_uint256(R1L) == R1L);
BOOST_CHECK((arith_uint256(R1L^R2L)^R2L) == R1L);
BOOST_CHECK(arith_uint256(ZeroL) == ZeroL);
BOOST_CHECK(arith_uint256(OneL) == OneL);
// uint64_t constructor
BOOST_CHECK( (R1L & arith_uint256("0xffffffffffffffff")) == arith_uint256(R1LLow64));
BOOST_CHECK((R1L & arith_uint256S("0xffffffffffffffff")) == arith_uint256(R1LLow64));
BOOST_CHECK(ZeroL == arith_uint256(0));
BOOST_CHECK(OneL == arith_uint256(1));
BOOST_CHECK(arith_uint256("0xffffffffffffffff") == arith_uint256(0xffffffffffffffffULL));
BOOST_CHECK(arith_uint256S("0xffffffffffffffff") == arith_uint256(0xffffffffffffffffULL));
// Assignment (from base_uint)
arith_uint256 tmpL = ~ZeroL; BOOST_CHECK(tmpL == ~ZeroL);
@ -282,7 +283,7 @@ BOOST_AUTO_TEST_CASE( comparison ) // <= >= < >
BOOST_AUTO_TEST_CASE( plusMinus )
{
arith_uint256 TmpL = 0;
BOOST_CHECK(R1L+R2L == arith_uint256(R1LplusR2L));
BOOST_CHECK(R1L + R2L == arith_uint256S(R1LplusR2L));
TmpL += R1L;
BOOST_CHECK(TmpL == R1L);
TmpL += R2L;
@ -346,8 +347,8 @@ BOOST_AUTO_TEST_CASE( multiply )
BOOST_AUTO_TEST_CASE( divide )
{
arith_uint256 D1L("AD7133AC1977FA2B7");
arith_uint256 D2L("ECD751716");
arith_uint256 D1L{arith_uint256S("AD7133AC1977FA2B7")};
arith_uint256 D2L{arith_uint256S("ECD751716")};
BOOST_CHECK((R1L / D1L).ToString() == "00000000000000000b8ac01106981635d9ed112290f8895545a7654dde28fb3a");
BOOST_CHECK((R1L / D2L).ToString() == "000000000873ce8efec5b67150bad3aa8c5fcb70e947586153bf2cec7c37c57a");
BOOST_CHECK(R1L / OneL == R1L);
@ -368,7 +369,7 @@ static bool almostEqual(double d1, double d2)
return fabs(d1-d2) <= 4*fabs(d1)*std::numeric_limits<double>::epsilon();
}
BOOST_AUTO_TEST_CASE( methods ) // GetHex SetHex size() GetLow64 GetSerializeSize, Serialize, Unserialize
BOOST_AUTO_TEST_CASE(methods) // GetHex operator= size() GetLow64 GetSerializeSize, Serialize, Unserialize
{
BOOST_CHECK(R1L.GetHex() == R1L.ToString());
BOOST_CHECK(R2L.GetHex() == R2L.ToString());
@ -376,11 +377,14 @@ BOOST_AUTO_TEST_CASE( methods ) // GetHex SetHex size() GetLow64 GetSerializeSiz
BOOST_CHECK(MaxL.GetHex() == MaxL.ToString());
arith_uint256 TmpL(R1L);
BOOST_CHECK(TmpL == R1L);
TmpL.SetHex(R2L.ToString()); BOOST_CHECK(TmpL == R2L);
TmpL.SetHex(ZeroL.ToString()); BOOST_CHECK(TmpL == 0);
TmpL.SetHex(HalfL.ToString()); BOOST_CHECK(TmpL == HalfL);
TmpL = R2L;
BOOST_CHECK(TmpL == R2L);
TmpL = ZeroL;
BOOST_CHECK(TmpL == 0);
TmpL = HalfL;
BOOST_CHECK(TmpL == HalfL);
TmpL.SetHex(R1L.ToString());
TmpL = R1L;
BOOST_CHECK(R1L.size() == 32);
BOOST_CHECK(R2L.size() == 32);
BOOST_CHECK(ZeroL.size() == 32);

View file

@ -177,7 +177,7 @@ void sanity_check_chainparams(const ArgsManager& args, ChainType chain_type)
// check max target * 4*nPowTargetTimespan doesn't overflow -- see pow.cpp:CalculateNextWorkRequired()
if (!consensus.fPowNoRetargeting) {
arith_uint256 targ_max("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
arith_uint256 targ_max{UintToArith256(uint256S("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"))};
targ_max /= consensus.nPowTargetTimespan*4;
BOOST_CHECK(UintToArith256(consensus.powLimit) < targ_max);
}

View file

@ -259,8 +259,8 @@ BOOST_AUTO_TEST_CASE( conversion )
BOOST_CHECK(UintToArith256(OneL) == 1);
BOOST_CHECK(ArithToUint256(0) == ZeroL);
BOOST_CHECK(ArithToUint256(1) == OneL);
BOOST_CHECK(arith_uint256(R1L.GetHex()) == UintToArith256(R1L));
BOOST_CHECK(arith_uint256(R2L.GetHex()) == UintToArith256(R2L));
BOOST_CHECK(arith_uint256(UintToArith256(uint256S(R1L.GetHex()))) == UintToArith256(R1L));
BOOST_CHECK(arith_uint256(UintToArith256(uint256S(R2L.GetHex()))) == UintToArith256(R2L));
BOOST_CHECK(R1L.GetHex() == UintToArith256(R1L).GetHex());
BOOST_CHECK(R2L.GetHex() == UintToArith256(R2L).GetHex());
}
@ -278,6 +278,34 @@ BOOST_AUTO_TEST_CASE( operator_with_self )
BOOST_CHECK(v == UintToArith256(uint256S("0")));
}
BOOST_AUTO_TEST_CASE(parse)
{
{
std::string s_12{"0000000000000000000000000000000000000000000000000000000000000012"};
BOOST_CHECK_EQUAL(uint256S("12\0").GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S(std::string{"12\0", 3}).GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S("0x12").GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S(" 0x12").GetHex(), s_12);
BOOST_CHECK_EQUAL(uint256S(" 12").GetHex(), s_12);
}
{
std::string s_1{uint256::ONE.GetHex()};
BOOST_CHECK_EQUAL(uint256S("1\0").GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S(std::string{"1\0", 2}).GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S("0x1").GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S(" 0x1").GetHex(), s_1);
BOOST_CHECK_EQUAL(uint256S(" 1").GetHex(), s_1);
}
{
std::string s_0{uint256::ZERO.GetHex()};
BOOST_CHECK_EQUAL(uint256S("\0").GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S(std::string{"\0", 1}).GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S("0x").GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S(" 0x").GetHex(), s_0);
BOOST_CHECK_EQUAL(uint256S(" ").GetHex(), s_0);
}
}
BOOST_AUTO_TEST_CASE( check_ONE )
{
uint256 one = uint256S("0000000000000000000000000000000000000000000000000000000000000001");