More robust CScheduler unit test

On a busy or slow system, the CScheduler unit test could fail because it
assumed all threads would be done after a couple of milliseconds.

Replace the hard-coded sleep with CScheduler stop() method that
will cleanly exit the servicing threads when all tasks are completely
finished.
This commit is contained in:
Gavin Andresen 2015-05-15 12:40:36 -04:00
parent e47c94e64c
commit f50105486f
No known key found for this signature in database
GPG key ID: 7588242FBE38D3A8
3 changed files with 70 additions and 18 deletions

View file

@ -8,7 +8,7 @@
#include <boost/bind.hpp> #include <boost/bind.hpp>
#include <utility> #include <utility>
CScheduler::CScheduler() : nThreadsServicingQueue(0) CScheduler::CScheduler() : nThreadsServicingQueue(0), stopRequested(false), stopWhenEmpty(false)
{ {
} }
@ -29,32 +29,37 @@ void CScheduler::serviceQueue()
{ {
boost::unique_lock<boost::mutex> lock(newTaskMutex); boost::unique_lock<boost::mutex> lock(newTaskMutex);
++nThreadsServicingQueue; ++nThreadsServicingQueue;
stopRequested = false;
stopWhenEmpty = false;
// newTaskMutex is locked throughout this loop EXCEPT // newTaskMutex is locked throughout this loop EXCEPT
// when the thread is waiting or when the user's function // when the thread is waiting or when the user's function
// is called. // is called.
while (1) { while (!shouldStop()) {
try { try {
while (taskQueue.empty()) { while (!shouldStop() && taskQueue.empty()) {
// Wait until there is something to do. // Wait until there is something to do.
newTaskScheduled.wait(lock); newTaskScheduled.wait(lock);
} }
// Wait until either there is a new task, or until
// the time of the first item on the queue: // Wait until either there is a new task, or until
// the time of the first item on the queue:
// wait_until needs boost 1.50 or later; older versions have timed_wait: // wait_until needs boost 1.50 or later; older versions have timed_wait:
#if BOOST_VERSION < 105000 #if BOOST_VERSION < 105000
while (!taskQueue.empty() && newTaskScheduled.timed_wait(lock, toPosixTime(taskQueue.begin()->first))) { while (!shouldStop() && !taskQueue.empty() &&
newTaskScheduled.timed_wait(lock, toPosixTime(taskQueue.begin()->first))) {
// Keep waiting until timeout // Keep waiting until timeout
} }
#else #else
while (!taskQueue.empty() && newTaskScheduled.wait_until(lock, taskQueue.begin()->first) != boost::cv_status::timeout) { while (!shouldStop() && !taskQueue.empty() &&
newTaskScheduled.wait_until(lock, taskQueue.begin()->first) != boost::cv_status::timeout) {
// Keep waiting until timeout // Keep waiting until timeout
} }
#endif #endif
// If there are multiple threads, the queue can empty while we're waiting (another // If there are multiple threads, the queue can empty while we're waiting (another
// thread may service the task we were waiting on). // thread may service the task we were waiting on).
if (taskQueue.empty()) if (shouldStop() || taskQueue.empty())
continue; continue;
Function f = taskQueue.begin()->second; Function f = taskQueue.begin()->second;
@ -70,6 +75,19 @@ void CScheduler::serviceQueue()
throw; throw;
} }
} }
--nThreadsServicingQueue;
}
void CScheduler::stop(bool drain)
{
{
boost::unique_lock<boost::mutex> lock(newTaskMutex);
if (drain)
stopWhenEmpty = true;
else
stopRequested = true;
}
newTaskScheduled.notify_all();
} }
void CScheduler::schedule(CScheduler::Function f, boost::chrono::system_clock::time_point t) void CScheduler::schedule(CScheduler::Function f, boost::chrono::system_clock::time_point t)
@ -96,3 +114,15 @@ void CScheduler::scheduleEvery(CScheduler::Function f, int64_t deltaSeconds)
{ {
scheduleFromNow(boost::bind(&Repeat, this, f, deltaSeconds), deltaSeconds); scheduleFromNow(boost::bind(&Repeat, this, f, deltaSeconds), deltaSeconds);
} }
size_t CScheduler::getQueueInfo(boost::chrono::system_clock::time_point &first,
boost::chrono::system_clock::time_point &last) const
{
boost::unique_lock<boost::mutex> lock(newTaskMutex);
size_t result = taskQueue.size();
if (!taskQueue.empty()) {
first = taskQueue.begin()->first;
last = taskQueue.rbegin()->first;
}
return result;
}

View file

@ -60,11 +60,24 @@ public:
// and interrupted using boost::interrupt_thread // and interrupted using boost::interrupt_thread
void serviceQueue(); void serviceQueue();
// Tell any threads running serviceQueue to stop as soon as they're
// done servicing whatever task they're currently servicing (drain=false)
// or when there is no work left to be done (drain=true)
void stop(bool drain=false);
// Returns number of tasks waiting to be serviced,
// and first and last task times
size_t getQueueInfo(boost::chrono::system_clock::time_point &first,
boost::chrono::system_clock::time_point &last) const;
private: private:
std::multimap<boost::chrono::system_clock::time_point, Function> taskQueue; std::multimap<boost::chrono::system_clock::time_point, Function> taskQueue;
boost::condition_variable newTaskScheduled; boost::condition_variable newTaskScheduled;
boost::mutex newTaskMutex; mutable boost::mutex newTaskMutex;
int nThreadsServicingQueue; int nThreadsServicingQueue;
bool stopRequested;
bool stopWhenEmpty;
bool shouldStop() { return stopRequested || (stopWhenEmpty && taskQueue.empty()); }
}; };
#endif #endif

View file

@ -42,6 +42,8 @@ static void MicroSleep(uint64_t n)
BOOST_AUTO_TEST_CASE(manythreads) BOOST_AUTO_TEST_CASE(manythreads)
{ {
seed_insecure_rand(false);
// Stress test: hundreds of microsecond-scheduled tasks, // Stress test: hundreds of microsecond-scheduled tasks,
// serviced by 10 threads. // serviced by 10 threads.
// //
@ -54,10 +56,6 @@ BOOST_AUTO_TEST_CASE(manythreads)
// counters should sum to the number of initial tasks performed. // counters should sum to the number of initial tasks performed.
CScheduler microTasks; CScheduler microTasks;
boost::thread_group microThreads;
for (int i = 0; i < 5; i++)
microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks));
boost::mutex counterMutex[10]; boost::mutex counterMutex[10];
int counter[10] = { 0 }; int counter[10] = { 0 };
boost::random::mt19937 rng(insecure_rand()); boost::random::mt19937 rng(insecure_rand());
@ -67,6 +65,9 @@ BOOST_AUTO_TEST_CASE(manythreads)
boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now(); boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now();
boost::chrono::system_clock::time_point now = start; boost::chrono::system_clock::time_point now = start;
boost::chrono::system_clock::time_point first, last;
size_t nTasks = microTasks.getQueueInfo(first, last);
BOOST_CHECK(nTasks == 0);
for (int i = 0; i < 100; i++) { for (int i = 0; i < 100; i++) {
boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng)); boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
@ -77,9 +78,19 @@ BOOST_AUTO_TEST_CASE(manythreads)
randomDelta(rng), tReschedule); randomDelta(rng), tReschedule);
microTasks.schedule(f, t); microTasks.schedule(f, t);
} }
nTasks = microTasks.getQueueInfo(first, last);
BOOST_CHECK(nTasks == 100);
BOOST_CHECK(first < last);
BOOST_CHECK(last > now);
// As soon as these are created they will start running and servicing the queue
boost::thread_group microThreads;
for (int i = 0; i < 5; i++)
microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks));
MicroSleep(600); MicroSleep(600);
now = boost::chrono::system_clock::now(); now = boost::chrono::system_clock::now();
// More threads and more tasks: // More threads and more tasks:
for (int i = 0; i < 5; i++) for (int i = 0; i < 5; i++)
microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks)); microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks));
@ -93,11 +104,9 @@ BOOST_AUTO_TEST_CASE(manythreads)
microTasks.schedule(f, t); microTasks.schedule(f, t);
} }
// All 2,000 tasks should be finished within 2 milliseconds. Sleep a bit longer. // Drain the task queue then exit threads
MicroSleep(2100); microTasks.stop(true);
microThreads.join_all(); // ... wait until all the threads are done
microThreads.interrupt_all();
microThreads.join_all();
int counterSum = 0; int counterSum = 0;
for (int i = 0; i < 10; i++) { for (int i = 0; i < 10; i++) {