From f1ebfe399f4f0bba575872ddebaf45608695378b Mon Sep 17 00:00:00 2001 From: Pieter Wuille Date: Wed, 21 Jan 2015 17:20:43 -0500 Subject: [PATCH] Convert the scalar constant initialization to static consts --- src/scalar.h | 3 - src/scalar_4x64.h | 2 + src/scalar_8x32.h | 2 + src/scalar_impl.h | 196 +++++++++++++++++----------------------------- src/secp256k1.c | 2 - src/tests.c | 2 - 6 files changed, 77 insertions(+), 130 deletions(-) diff --git a/src/scalar.h b/src/scalar.h index 2f5ba0d447a..f524eef2698 100644 --- a/src/scalar.h +++ b/src/scalar.h @@ -21,9 +21,6 @@ #error "Please select scalar implementation" #endif -static void secp256k1_scalar_start(void); -static void secp256k1_scalar_stop(void); - /** Clear a scalar to prevent the leak of sensitive data. */ static void secp256k1_scalar_clear(secp256k1_scalar_t *r); diff --git a/src/scalar_4x64.h b/src/scalar_4x64.h index 5a751c68622..82899aa7b04 100644 --- a/src/scalar_4x64.h +++ b/src/scalar_4x64.h @@ -14,4 +14,6 @@ typedef struct { uint64_t d[4]; } secp256k1_scalar_t; +#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}} + #endif diff --git a/src/scalar_8x32.h b/src/scalar_8x32.h index f70328cfc93..f17017e24e2 100644 --- a/src/scalar_8x32.h +++ b/src/scalar_8x32.h @@ -14,4 +14,6 @@ typedef struct { uint32_t d[8]; } secp256k1_scalar_t; +#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}} + #endif diff --git a/src/scalar_impl.h b/src/scalar_impl.h index 4408cce2d88..7c00b50abf2 100644 --- a/src/scalar_impl.h +++ b/src/scalar_impl.h @@ -24,121 +24,6 @@ #error "Please select scalar implementation" #endif -typedef struct { -#ifndef USE_NUM_NONE - secp256k1_num_t order; -#endif -#ifdef USE_ENDOMORPHISM - secp256k1_scalar_t minus_lambda, minus_b1, minus_b2, g1, g2; -#endif -} secp256k1_scalar_consts_t; - -static const secp256k1_scalar_consts_t *secp256k1_scalar_consts = NULL; - -static void secp256k1_scalar_start(void) { - if (secp256k1_scalar_consts != NULL) - return; - - /* Allocate. */ - secp256k1_scalar_consts_t *ret = (secp256k1_scalar_consts_t*)checked_malloc(sizeof(secp256k1_scalar_consts_t)); - -#ifndef USE_NUM_NONE - static const unsigned char secp256k1_scalar_consts_order[] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, - 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, - 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 - }; - secp256k1_num_set_bin(&ret->order, secp256k1_scalar_consts_order, sizeof(secp256k1_scalar_consts_order)); -#endif -#ifdef USE_ENDOMORPHISM - /** - * Lambda is a scalar which has the property for secp256k1 that point multiplication by - * it is efficiently computable (see secp256k1_gej_mul_lambda). */ - static const unsigned char secp256k1_scalar_consts_lambda[32] = { - 0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0, - 0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, - 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78, - 0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72 - }; - /** - * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm - * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 - * and k2 have a small size. - * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: - * - * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} - * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} - * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} - * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} - * - * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives - * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and - * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. - * - * g1, g2 are precomputed constants used to replace division with a rounded multiplication - * when decomposing the scalar for an endomorphism-based point multiplication. - * - * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve - * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. - * - * The derivation is described in the paper "Efficient Software Implementation of Public-Key - * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), - * Section 4.3 (here we use a somewhat higher-precision estimate): - * d = a1*b2 - b1*a2 - * g1 = round((2^272)*b2/d) - * g2 = round((2^272)*b1/d) - * - * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found - * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). - */ - static const unsigned char secp256k1_scalar_consts_minus_b1[32] = { - 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, - 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, - 0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28, - 0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3 - }; - static const unsigned char secp256k1_scalar_consts_b2[32] = { - 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, - 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, - 0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd, - 0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15 - }; - static const unsigned char secp256k1_scalar_consts_g1[32] = { - 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, - 0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x86, - 0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c, - 0x90,0xe4,0x92,0x84,0xeb,0x15,0x3d,0xab - }; - static const unsigned char secp256k1_scalar_consts_g2[32] = { - 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, - 0x00,0x00,0x00,0x00,0x00,0x00,0xe4,0x43, - 0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54, - 0x7f,0xa9,0x0a,0xbf,0xe4,0xc4,0x22,0x12 - }; - - secp256k1_scalar_set_b32(&ret->minus_lambda, secp256k1_scalar_consts_lambda, NULL); - secp256k1_scalar_negate(&ret->minus_lambda, &ret->minus_lambda); - secp256k1_scalar_set_b32(&ret->minus_b1, secp256k1_scalar_consts_minus_b1, NULL); - secp256k1_scalar_set_b32(&ret->minus_b2, secp256k1_scalar_consts_b2, NULL); - secp256k1_scalar_negate(&ret->minus_b2, &ret->minus_b2); - secp256k1_scalar_set_b32(&ret->g1, secp256k1_scalar_consts_g1, NULL); - secp256k1_scalar_set_b32(&ret->g2, secp256k1_scalar_consts_g2, NULL); -#endif - - /* Set the global pointer. */ - secp256k1_scalar_consts = ret; -} - -static void secp256k1_scalar_stop(void) { - if (secp256k1_scalar_consts == NULL) - return; - - secp256k1_scalar_consts_t *c = (secp256k1_scalar_consts_t*)secp256k1_scalar_consts; - secp256k1_scalar_consts = NULL; - free(c); -} - #ifndef USE_NUM_NONE static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_t *a) { unsigned char c[32]; @@ -147,7 +32,13 @@ static void secp256k1_scalar_get_num(secp256k1_num_t *r, const secp256k1_scalar_ } static void secp256k1_scalar_order_get_num(secp256k1_num_t *r) { - *r = secp256k1_scalar_consts->order; + static const unsigned char order[32] = { + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, + 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, + 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 + }; + secp256k1_num_set_bin(r, order, 32); } #endif @@ -308,9 +199,10 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_ #elif defined(USE_SCALAR_INV_NUM) unsigned char b[32]; secp256k1_scalar_get_b32(b, x); - secp256k1_num_t n; + secp256k1_num_t n, m; secp256k1_num_set_bin(&n, b, 32); - secp256k1_num_mod_inverse(&n, &n, &secp256k1_scalar_consts->order); + secp256k1_scalar_order_get_num(&m); + secp256k1_num_mod_inverse(&n, &n, &m); secp256k1_num_get_bin(b, 32, &n); secp256k1_scalar_set_b32(r, b, NULL); #else @@ -319,16 +211,74 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar_t *r, const secp256k1_ } #ifdef USE_ENDOMORPHISM +/** + * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where + * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, + * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} + * + * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm + * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 + * and k2 have a small size. + * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: + * + * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} + * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} + * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} + * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} + * + * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives + * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and + * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. + * + * g1, g2 are precomputed constants used to replace division with a rounded multiplication + * when decomposing the scalar for an endomorphism-based point multiplication. + * + * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve + * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. + * + * The derivation is described in the paper "Efficient Software Implementation of Public-Key + * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), + * Section 4.3 (here we use a somewhat higher-precision estimate): + * d = a1*b2 - b1*a2 + * g1 = round((2^272)*b2/d) + * g2 = round((2^272)*b1/d) + * + * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found + * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). + * + * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). + */ + static void secp256k1_scalar_split_lambda_var(secp256k1_scalar_t *r1, secp256k1_scalar_t *r2, const secp256k1_scalar_t *a) { + static const secp256k1_scalar_t minus_lambda = SECP256K1_SCALAR_CONST( + 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, + 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL + ); + static const secp256k1_scalar_t minus_b1 = SECP256K1_SCALAR_CONST( + 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, + 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL + ); + static const secp256k1_scalar_t minus_b2 = SECP256K1_SCALAR_CONST( + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, + 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL + ); + static const secp256k1_scalar_t g1 = SECP256K1_SCALAR_CONST( + 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, + 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL + ); + static const secp256k1_scalar_t g2 = SECP256K1_SCALAR_CONST( + 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, + 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL + ); VERIFY_CHECK(r1 != a); VERIFY_CHECK(r2 != a); secp256k1_scalar_t c1, c2; - secp256k1_scalar_mul_shift_var(&c1, a, &secp256k1_scalar_consts->g1, 272); - secp256k1_scalar_mul_shift_var(&c2, a, &secp256k1_scalar_consts->g2, 272); - secp256k1_scalar_mul(&c1, &c1, &secp256k1_scalar_consts->minus_b1); - secp256k1_scalar_mul(&c2, &c2, &secp256k1_scalar_consts->minus_b2); + secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); + secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); + secp256k1_scalar_mul(&c1, &c1, &minus_b1); + secp256k1_scalar_mul(&c2, &c2, &minus_b2); secp256k1_scalar_add(r2, &c1, &c2); - secp256k1_scalar_mul(r1, r2, &secp256k1_scalar_consts->minus_lambda); + secp256k1_scalar_mul(r1, r2, &minus_lambda); secp256k1_scalar_add(r1, r1, a); } #endif diff --git a/src/secp256k1.c b/src/secp256k1.c index 58bcd8d009e..7294648c3b0 100644 --- a/src/secp256k1.c +++ b/src/secp256k1.c @@ -22,7 +22,6 @@ void secp256k1_start(unsigned int flags) { secp256k1_fe_start(); secp256k1_ge_start(); - secp256k1_scalar_start(); secp256k1_ecdsa_start(); if (flags & SECP256K1_START_SIGN) { secp256k1_ecmult_gen_start(); @@ -36,7 +35,6 @@ void secp256k1_stop(void) { secp256k1_ecmult_stop(); secp256k1_ecmult_gen_stop(); secp256k1_ecdsa_stop(); - secp256k1_scalar_stop(); secp256k1_ge_stop(); secp256k1_fe_stop(); } diff --git a/src/tests.c b/src/tests.c index cff32f1d068..0483cc920cc 100644 --- a/src/tests.c +++ b/src/tests.c @@ -1660,7 +1660,6 @@ int main(int argc, char **argv) { /* Likewise, re-running the internal init functions should be harmless. */ secp256k1_fe_start(); secp256k1_ge_start(); - secp256k1_scalar_start(); secp256k1_ecdsa_start(); run_sha256_tests(); @@ -1711,7 +1710,6 @@ int main(int argc, char **argv) { /* Same for the internal shutdown functions. */ secp256k1_fe_stop(); secp256k1_ge_stop(); - secp256k1_scalar_stop(); secp256k1_ecdsa_stop(); return 0; }