From f11ff5be70960289e6ec75c229f5af118f2da7a3 Mon Sep 17 00:00:00 2001 From: Pieter Wuille Date: Sun, 31 Mar 2013 17:02:52 +0200 Subject: [PATCH] Third step in converting to C: group --- src/bench.cpp | 15 +- src/ecdsa.cpp | 26 +-- src/ecdsa.h | 4 +- src/ecmult.cpp | 124 ++++++----- src/ecmult.h | 6 +- src/group.cpp | 508 +++++++++++++++++++++++----------------------- src/group.h | 111 +--------- src/secp256k1.cpp | 5 +- src/tests.cpp | 50 +++-- 9 files changed, 395 insertions(+), 454 deletions(-) diff --git a/src/bench.cpp b/src/bench.cpp index 2801dc2f1e5..d86025f64b0 100644 --- a/src/bench.cpp +++ b/src/bench.cpp @@ -11,9 +11,10 @@ using namespace secp256k1; int main() { secp256k1_num_start(); secp256k1_fe_start(); + secp256k1_ge_start(); secp256k1_fe_t x; - const secp256k1_num_t &order = GetGroupConst().order; + const secp256k1_num_t *order = &secp256k1_ge_consts->order; secp256k1_num_t r, s, m; secp256k1_num_init(&r); secp256k1_num_init(&s); @@ -23,12 +24,12 @@ int main() { int cnt = 0; int good = 0; for (int i=0; i<1000000; i++) { - secp256k1_num_set_rand(&r, &order); - secp256k1_num_set_rand(&s, &order); - secp256k1_num_set_rand(&m, &order); + secp256k1_num_set_rand(&r, order); + secp256k1_num_set_rand(&s, order); + secp256k1_num_set_rand(&m, order); sig.SetRS(r,s); - GroupElemJac pubkey; pubkey.SetCompressed(x, true); - if (pubkey.IsValid()) { + secp256k1_gej_t pubkey; secp256k1_gej_set_xo(&pubkey, &x, 1); + if (secp256k1_gej_is_valid(&pubkey)) { cnt++; good += sig.Verify(pubkey, m); } @@ -38,6 +39,8 @@ int main() { secp256k1_num_free(&s); secp256k1_num_free(&m); + secp256k1_ge_stop(); secp256k1_fe_stop(); + secp256k1_num_stop(); return 0; } diff --git a/src/ecdsa.cpp b/src/ecdsa.cpp index 2e64a079b8a..6ef1fab6d33 100644 --- a/src/ecdsa.cpp +++ b/src/ecdsa.cpp @@ -6,22 +6,22 @@ namespace secp256k1 { -bool ParsePubKey(GroupElemJac &elem, const unsigned char *pub, int size) { +bool ParsePubKey(secp256k1_gej_t &elem, const unsigned char *pub, int size) { if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) { secp256k1_fe_t x; secp256k1_fe_set_b32(&x, pub+1); - elem.SetCompressed(x, pub[0] == 0x03); + secp256k1_gej_set_xo(&elem, &x, pub[0] == 0x03); } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { secp256k1_fe_t x,y; secp256k1_fe_set_b32(&x, pub+1); secp256k1_fe_set_b32(&y, pub+33); - elem = GroupElem(x,y); + secp256k1_gej_set_xy(&elem, &x, &y); if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07)) return false; } else { return false; } - return elem.IsValid(); + return secp256k1_gej_is_valid(&elem); } bool Signature::Parse(const unsigned char *sig, int size) { @@ -61,8 +61,8 @@ bool Signature::Serialize(unsigned char *sig, int *size) { return true; } -bool Signature::RecomputeR(secp256k1_num_t &r2, const GroupElemJac &pubkey, const secp256k1_num_t &message) const { - const GroupConstants &c = GetGroupConst(); +bool Signature::RecomputeR(secp256k1_num_t &r2, const secp256k1_gej_t &pubkey, const secp256k1_num_t &message) const { + const secp256k1_ge_consts_t &c = *secp256k1_ge_consts; if (secp256k1_num_is_neg(&r) || secp256k1_num_is_neg(&s)) return false; @@ -79,9 +79,9 @@ bool Signature::RecomputeR(secp256k1_num_t &r2, const GroupElemJac &pubkey, cons secp256k1_num_mod_inverse(&sn, &s, &c.order); secp256k1_num_mod_mul(&u1, &sn, &message, &c.order); secp256k1_num_mod_mul(&u2, &sn, &r, &c.order); - GroupElemJac pr; ECMult(pr, pubkey, u2, u1); - if (!pr.IsInfinity()) { - secp256k1_fe_t xr; pr.GetX(xr); + secp256k1_gej_t pr; ECMult(pr, pubkey, u2, u1); + if (!secp256k1_gej_is_infinity(&pr)) { + secp256k1_fe_t xr; secp256k1_gej_get_x(&xr, &pr); secp256k1_fe_normalize(&xr); unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr); secp256k1_num_set_bin(&r2, xrb, 32); @@ -94,7 +94,7 @@ bool Signature::RecomputeR(secp256k1_num_t &r2, const GroupElemJac &pubkey, cons return ret; } -bool Signature::Verify(const GroupElemJac &pubkey, const secp256k1_num_t &message) const { +bool Signature::Verify(const secp256k1_gej_t &pubkey, const secp256k1_num_t &message) const { secp256k1_num_t r2; secp256k1_num_init(&r2); bool ret = false; @@ -104,12 +104,12 @@ bool Signature::Verify(const GroupElemJac &pubkey, const secp256k1_num_t &messag } bool Signature::Sign(const secp256k1_num_t &seckey, const secp256k1_num_t &message, const secp256k1_num_t &nonce) { - const GroupConstants &c = GetGroupConst(); + const secp256k1_ge_consts_t &c = *secp256k1_ge_consts; - GroupElemJac rp; + secp256k1_gej_t rp; ECMultBase(rp, nonce); secp256k1_fe_t rx; - rp.GetX(rx); + secp256k1_gej_get_x(&rx, &rp); unsigned char b[32]; secp256k1_fe_normalize(&rx); secp256k1_fe_get_b32(b, &rx); diff --git a/src/ecdsa.h b/src/ecdsa.h index 6ce4ff29138..14b1b014a81 100644 --- a/src/ecdsa.h +++ b/src/ecdsa.h @@ -19,8 +19,8 @@ public: bool Parse(const unsigned char *sig, int size); bool Serialize(unsigned char *sig, int *size); - bool RecomputeR(secp256k1_num_t &r2, const GroupElemJac &pubkey, const secp256k1_num_t &message) const; - bool Verify(const GroupElemJac &pubkey, const secp256k1_num_t &message) const; + bool RecomputeR(secp256k1_num_t &r2, const secp256k1_gej_t &pubkey, const secp256k1_num_t &message) const; + bool Verify(const secp256k1_gej_t &pubkey, const secp256k1_num_t &message) const; bool Sign(const secp256k1_num_t &seckey, const secp256k1_num_t &message, const secp256k1_num_t &nonce); void SetRS(const secp256k1_num_t &rin, const secp256k1_num_t &sin); std::string ToString() const; diff --git a/src/ecmult.cpp b/src/ecmult.cpp index 84dce7b238b..2493f686596 100644 --- a/src/ecmult.cpp +++ b/src/ecmult.cpp @@ -14,35 +14,65 @@ namespace secp256k1 { -template class WNAFPrecomp { +template class WNAFPrecompJac { private: - G pre[1 << (W-2)]; + secp256k1_gej_t pre[1 << (W-2)]; public: - WNAFPrecomp() {} + WNAFPrecompJac() {} - void Build(const G &base) { + void Build(const secp256k1_gej_t &base) { pre[0] = base; - GroupElemJac x(base); - GroupElemJac d; d.SetDouble(x); - for (int i=1; i<(1 << (W-2)); i++) { - x.SetAdd(d,pre[i-1]); - pre[i].SetJac(x); - } + secp256k1_gej_t d; secp256k1_gej_double(&d, &pre[0]); + for (int i=1; i<(1 << (W-2)); i++) + secp256k1_gej_add(&pre[i], &d, &pre[i-1]); } - WNAFPrecomp(const G &base) { + WNAFPrecompJac(const secp256k1_gej_t &base) { Build(base); } - void Get(G &out, int exp) const { + void Get(secp256k1_gej_t &out, int exp) const { assert((exp & 1) == 1); assert(exp >= -((1 << (W-1)) - 1)); assert(exp <= ((1 << (W-1)) - 1)); if (exp > 0) { out = pre[(exp-1)/2]; } else { - out.SetNeg(pre[(-exp-1)/2]); + secp256k1_gej_neg(&out, &pre[(-exp-1)/2]); + } + } +}; + +template class WNAFPrecompAff { +private: + secp256k1_ge_t pre[1 << (W-2)]; + +public: + WNAFPrecompAff() {} + + void Build(const secp256k1_ge_t &base) { + pre[0] = base; + secp256k1_gej_t x; secp256k1_gej_set_ge(&x, &base); + secp256k1_gej_t d; secp256k1_gej_double(&d, &x); + for (int i=1; i<(1 << (W-2)); i++) { + secp256k1_gej_add_ge(&x, &d, &pre[i-1]); + secp256k1_ge_set_gej(&pre[i], &x); + } + } + + WNAFPrecompAff(const secp256k1_ge_t &base) { + Build(base); + } + + void Get(secp256k1_ge_t &out, int exp) const { + assert((exp & 1) == 1); + assert(exp >= -((1 << (W-1)) - 1)); + assert(exp <= ((1 << (W-1)) - 1)); + if (exp > 0) { + out = pre[(exp-1)/2]; + } else { + secp256k1_ge_neg(&out, &pre[(-exp-1)/2]); } } }; @@ -112,33 +142,33 @@ public: class ECMultConsts { public: - WNAFPrecomp wpg; - WNAFPrecomp wpg128; - GroupElem prec[64][16]; // prec[j][i] = 16^j * (i+1) * G - GroupElem fin; // -(sum(prec[j][0], j=0..63)) + WNAFPrecompAff wpg; + WNAFPrecompAff wpg128; + secp256k1_ge_t prec[64][16]; // prec[j][i] = 16^j * (i+1) * G + secp256k1_ge_t fin; // -(sum(prec[j][0], j=0..63)) ECMultConsts() { - const GroupElem &g = GetGroupConst().g; - GroupElemJac g128j(g); + const secp256k1_ge_t &g = secp256k1_ge_consts->g; + secp256k1_gej_t g128j; secp256k1_gej_set_ge(&g128j, &g); for (int i=0; i<128; i++) - g128j.SetDouble(g128j); - GroupElem g128; g128.SetJac(g128j); + secp256k1_gej_double(&g128j, &g128j); + secp256k1_ge_t g128; secp256k1_ge_set_gej(&g128, &g128j); wpg.Build(g); wpg128.Build(g128); - GroupElemJac gg(g); - GroupElem ad(g); - GroupElemJac fn; + secp256k1_gej_t gg; secp256k1_gej_set_ge(&gg, &g); + secp256k1_ge_t ad = g; + secp256k1_gej_t fn; secp256k1_gej_set_infinity(&fn); for (int j=0; j<64; j++) { - prec[j][0].SetJac(gg); - fn.SetAdd(fn, gg); + secp256k1_ge_set_gej(&prec[j][0], &gg); + secp256k1_gej_add(&fn, &fn, &gg); for (int i=1; i<16; i++) { - gg.SetAdd(gg, ad); - prec[j][i].SetJac(gg); + secp256k1_gej_add_ge(&gg, &gg, &ad); + secp256k1_ge_set_gej(&prec[j][i], &gg); } ad = prec[j][15]; } - fn.SetNeg(fn); - fin.SetJac(fn); + secp256k1_ge_set_gej(&fin, &fn); + secp256k1_ge_neg(&fin, &fin); } }; @@ -147,20 +177,20 @@ const ECMultConsts &GetECMultConsts() { return ecmult_consts; } -void ECMultBase(GroupElemJac &out, const secp256k1_num_t &gn) { +void ECMultBase(secp256k1_gej_t &out, const secp256k1_num_t &gn) { secp256k1_num_t n; secp256k1_num_init(&n); secp256k1_num_copy(&n, &gn); const ECMultConsts &c = GetECMultConsts(); - out.SetAffine(c.prec[0][secp256k1_num_shift(&n, 4)]); + secp256k1_gej_set_ge(&out, &c.prec[0][secp256k1_num_shift(&n, 4)]); for (int j=1; j<64; j++) { - out.SetAdd(out, c.prec[j][secp256k1_num_shift(&n, 4)]); + secp256k1_gej_add_ge(&out, &out, &c.prec[j][secp256k1_num_shift(&n, 4)]); } secp256k1_num_free(&n); - out.SetAdd(out, c.fin); + secp256k1_gej_add_ge(&out, &out, &c.fin); } -void ECMult(GroupElemJac &out, const GroupElemJac &a, const secp256k1_num_t &an, const secp256k1_num_t &gn) { +void ECMult(secp256k1_gej_t &out, const secp256k1_gej_t &a, const secp256k1_num_t &an, const secp256k1_num_t &gn) { secp256k1_num_t an1, an2; secp256k1_num_t gn1, gn2; @@ -169,7 +199,7 @@ void ECMult(GroupElemJac &out, const GroupElemJac &a, const secp256k1_num_t &an, secp256k1_num_init(&gn1); secp256k1_num_init(&gn2); - SplitExp(an, an1, an2); + secp256k1_gej_split_exp(&an1, &an2, &an); // printf("an=%s\n", an.ToString().c_str()); // printf("an1=%s\n", an1.ToString().c_str()); // printf("an2=%s\n", an2.ToString().c_str()); @@ -181,9 +211,9 @@ void ECMult(GroupElemJac &out, const GroupElemJac &a, const secp256k1_num_t &an, WNAF<128> wa2(an2, WINDOW_A); WNAF<128> wg1(gn1, WINDOW_G); WNAF<128> wg2(gn2, WINDOW_G); - GroupElemJac a2; a2.SetMulLambda(a); - WNAFPrecomp wpa1(a); - WNAFPrecomp wpa2(a2); + secp256k1_gej_t a2; secp256k1_gej_mul_lambda(&a2, &a); + WNAFPrecompJac wpa1(a); + WNAFPrecompJac wpa2(a2); const ECMultConsts &c = GetECMultConsts(); int size_a1 = wa1.GetSize(); @@ -192,28 +222,28 @@ void ECMult(GroupElemJac &out, const GroupElemJac &a, const secp256k1_num_t &an, int size_g2 = wg2.GetSize(); int size = std::max(std::max(size_a1, size_a2), std::max(size_g1, size_g2)); - out = GroupElemJac(); - GroupElemJac tmpj; - GroupElem tmpa; + out; secp256k1_gej_set_infinity(&out); + secp256k1_gej_t tmpj; + secp256k1_ge_t tmpa; for (int i=size-1; i>=0; i--) { - out.SetDouble(out); + secp256k1_gej_double(&out, &out); int nw; if (i < size_a1 && (nw = wa1.Get(i))) { wpa1.Get(tmpj, nw); - out.SetAdd(out, tmpj); + secp256k1_gej_add(&out, &out, &tmpj); } if (i < size_a2 && (nw = wa2.Get(i))) { wpa2.Get(tmpj, nw); - out.SetAdd(out, tmpj); + secp256k1_gej_add(&out, &out, &tmpj); } if (i < size_g1 && (nw = wg1.Get(i))) { c.wpg.Get(tmpa, nw); - out.SetAdd(out, tmpa); + secp256k1_gej_add_ge(&out, &out, &tmpa); } if (i < size_g2 && (nw = wg2.Get(i))) { c.wpg128.Get(tmpa, nw); - out.SetAdd(out, tmpa); + secp256k1_gej_add_ge(&out, &out, &tmpa); } } diff --git a/src/ecmult.h b/src/ecmult.h index 08b25632f97..b7c028a7f33 100644 --- a/src/ecmult.h +++ b/src/ecmult.h @@ -1,13 +1,13 @@ #ifndef _SECP256K1_ECMULT_ #define _SECP256K1_ECMULT_ -#include "group.h" #include "num.h" +#include "group.h" namespace secp256k1 { -void ECMultBase(GroupElemJac &out, const secp256k1_num_t &gn); -void ECMult(GroupElemJac &out, const GroupElemJac &a, const secp256k1_num_t &an, const secp256k1_num_t &gn); +void ECMultBase(secp256k1_gej_t &out, const secp256k1_num_t &gn); +void ECMult(secp256k1_gej_t &out, const secp256k1_gej_t &a, const secp256k1_num_t &an, const secp256k1_num_t &gn); } diff --git a/src/group.cpp b/src/group.cpp index 5e0e5274978..ef877c0ac7c 100644 --- a/src/group.cpp +++ b/src/group.cpp @@ -1,83 +1,126 @@ -#include +#include #include "num.h" #include "field.h" #include "group.h" -namespace secp256k1 { +extern "C" { -GroupElem::GroupElem() { - fInfinity = true; +void static secp256k1_ge_set_infinity(secp256k1_ge_t *r) { + r->infinity = 1; } -GroupElem::GroupElem(const secp256k1_fe_t &xin, const secp256k1_fe_t &yin) { - fInfinity = false; - x = xin; - y = yin; +void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { + r->infinity = 0; + r->x = *x; + r->y = *y; } -bool GroupElem::IsInfinity() const { - return fInfinity; +int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { + return a->infinity; } -void GroupElem::SetNeg(const GroupElem &p) { - *this = p; - secp256k1_fe_normalize(&y); - secp256k1_fe_negate(&y, &y, 1); +void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + secp256k1_fe_normalize(&r->y); + secp256k1_fe_negate(&r->y, &r->y, 1); } -void GroupElem::GetX(secp256k1_fe_t &xout) { - xout = x; +void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) { + char cx[65]; int lx=65; + char cy[65]; int ly=65; + secp256k1_fe_get_hex(cx, &lx, &a->x); + secp256k1_fe_get_hex(cy, &ly, &a->y); + lx = strlen(cx); + ly = strlen(cy); + int len = lx + ly + 3 + 1; + if (*rlen < len) { + *rlen = len; + return; + } + *rlen = len; + r[0] = '('; + memcpy(r+1, cx, lx); + r[1+lx] = ','; + memcpy(r+2+lx, cy, ly); + r[2+lx+ly] = ')'; + r[3+lx+ly] = 0; } -void GroupElem::GetY(secp256k1_fe_t &yout) { - yout = y; +void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { + secp256k1_fe_inv_var(&a->z, &a->z); + secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); + secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2); + secp256k1_fe_mul(&a->x, &a->x, &z2); + secp256k1_fe_mul(&a->y, &a->y, &z3); + secp256k1_fe_set_int(&a->z, 1); + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; } -std::string GroupElem::ToString() const { - if (fInfinity) - return "(inf)"; - secp256k1_fe_t xc = x, yc = y; - char xo[65], yo[65]; - int xl = 65, yl = 65; - secp256k1_fe_get_hex(xo, &xl, &xc); - secp256k1_fe_get_hex(yo, &yl, &yc); - return "(" + std::string(xo) + "," + std::string(yo) + ")"; +void static secp256k1_gej_set_infinity(secp256k1_gej_t *r) { + r->infinity = 1; } -GroupElemJac::GroupElemJac() : GroupElem() { - secp256k1_fe_set_int(&z, 1); +void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { + r->infinity = 0; + r->x = *x; + r->y = *y; + secp256k1_fe_set_int(&r->z, 1); } -GroupElemJac::GroupElemJac(const secp256k1_fe_t &xin, const secp256k1_fe_t &yin) : GroupElem(xin,yin) { - secp256k1_fe_set_int(&z, 1); +void static secp256k1_gej_set_xo(secp256k1_gej_t *r, const secp256k1_fe_t *x, int odd) { + r->x = *x; + secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x); + secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2); + r->infinity = false; + secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); + secp256k1_fe_add(&c, &x3); + secp256k1_fe_sqrt(&r->y, &c); + secp256k1_fe_set_int(&r->z, 1); + secp256k1_fe_normalize(&r->y); + if (secp256k1_fe_is_odd(&r->y) != odd) + secp256k1_fe_negate(&r->y, &r->y, 1); } -GroupElemJac::GroupElemJac(const GroupElem &in) : GroupElem(in) { - secp256k1_fe_set_int(&z, 1); +void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + secp256k1_fe_set_int(&r->z, 1); } -void GroupElemJac::SetJac(const GroupElemJac &jac) { - *this = jac; +void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a) { + secp256k1_fe_t zi2; secp256k1_fe_inv_var(&zi2, &a->z); secp256k1_fe_sqr(&zi2, &zi2); + secp256k1_fe_mul(r, &a->x, &zi2); } -void GroupElemJac::SetAffine(const GroupElem &aff) { - fInfinity = aff.fInfinity; - x = aff.x; - y = aff.y; - secp256k1_fe_set_int(&z, 1); +void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { + r->infinity = a->infinity; + r->x = a->x; + r->y = a->y; + r->z = a->z; + secp256k1_fe_normalize(&r->y); + secp256k1_fe_negate(&r->y, &r->y, 1); } -bool GroupElemJac::IsValid() const { - if (IsInfinity()) +int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { + return a->infinity; +} + +int static secp256k1_gej_is_valid(const secp256k1_gej_t *a) { + if (a->infinity) return false; // y^2 = x^3 + 7 // (Y/Z^3)^2 = (X/Z^2)^3 + 7 // Y^2 / Z^6 = X^3 / Z^6 + 7 // Y^2 = X^3 + 7*Z^6 - secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &y); - secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &x); secp256k1_fe_mul(&x3, &x3, &x); - secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &z); + secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); + secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); + secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); secp256k1_fe_mul_int(&z6, 7); secp256k1_fe_add(&x3, &z6); @@ -86,256 +129,136 @@ bool GroupElemJac::IsValid() const { return secp256k1_fe_equal(&y2, &x3); } -void GroupElemJac::GetAffine(GroupElem &aff) { - secp256k1_fe_inv_var(&z, &z); - secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &z); - secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z, &z2); - secp256k1_fe_mul(&x, &x, &z2); - secp256k1_fe_mul(&y, &y, &z3); - secp256k1_fe_set_int(&z, 1); - aff.fInfinity = fInfinity; - aff.x = x; - aff.y = y; -} - -void GroupElemJac::GetX(secp256k1_fe_t &xout) { - secp256k1_fe_t zi2; secp256k1_fe_inv_var(&zi2, &z); secp256k1_fe_sqr(&zi2, &zi2); - secp256k1_fe_mul(&xout, &x, &zi2); -} - -void GroupElemJac::GetY(secp256k1_fe_t &yout) { - secp256k1_fe_t zi; secp256k1_fe_inv_var(&zi, &z); - secp256k1_fe_t zi3; secp256k1_fe_sqr(&zi3, &zi); secp256k1_fe_mul(&zi3, &zi, &zi3); - secp256k1_fe_mul(&yout, &y, &zi3); -} - -bool GroupElemJac::IsInfinity() const { - return fInfinity; -} - - -void GroupElemJac::SetNeg(const GroupElemJac &p) { - *this = p; - secp256k1_fe_normalize(&y); - secp256k1_fe_negate(&y, &y, 1); -} - -void GroupElemJac::SetCompressed(const secp256k1_fe_t &xin, bool fOdd) { - x = xin; - secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, &x); - secp256k1_fe_t x3; secp256k1_fe_mul(&x3, &x, &x2); - fInfinity = false; - secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); - secp256k1_fe_add(&c, &x3); - secp256k1_fe_sqrt(&y, &c); - secp256k1_fe_set_int(&z, 1); - secp256k1_fe_normalize(&y); - if (secp256k1_fe_is_odd(&y) != fOdd) - secp256k1_fe_negate(&y, &y, 1); -} - -void GroupElemJac::SetDouble(const GroupElemJac &p) { - secp256k1_fe_t t5 = p.y; +void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a) { + secp256k1_fe_t t5 = a->y; secp256k1_fe_normalize(&t5); - if (p.fInfinity || secp256k1_fe_is_zero(&t5)) { - fInfinity = true; + if (a->infinity || secp256k1_fe_is_zero(&t5)) { + r->infinity = true; return; } secp256k1_fe_t t1,t2,t3,t4; - secp256k1_fe_mul(&z, &t5, &p.z); - secp256k1_fe_mul_int(&z, 2); // Z' = 2*Y*Z (2) - secp256k1_fe_sqr(&t1, &p.x); - secp256k1_fe_mul_int(&t1, 3); // T1 = 3*X^2 (3) - secp256k1_fe_sqr(&t2, &t1); // T2 = 9*X^4 (1) + secp256k1_fe_mul(&r->z, &t5, &a->z); + secp256k1_fe_mul_int(&r->z, 2); // Z' = 2*Y*Z (2) + secp256k1_fe_sqr(&t1, &a->x); + secp256k1_fe_mul_int(&t1, 3); // T1 = 3*X^2 (3) + secp256k1_fe_sqr(&t2, &t1); // T2 = 9*X^4 (1) secp256k1_fe_sqr(&t3, &t5); - secp256k1_fe_mul_int(&t3, 2); // T3 = 2*Y^2 (2) + secp256k1_fe_mul_int(&t3, 2); // T3 = 2*Y^2 (2) secp256k1_fe_sqr(&t4, &t3); - secp256k1_fe_mul_int(&t4, 2); // T4 = 8*Y^4 (2) - secp256k1_fe_mul(&t3, &p.x, &t3); // T3 = 2*X*Y^2 (1) - x = t3; - secp256k1_fe_mul_int(&x, 4); // X' = 8*X*Y^2 (4) - secp256k1_fe_negate(&x, &x, 4); // X' = -8*X*Y^2 (5) - secp256k1_fe_add(&x, &t2); // X' = 9*X^4 - 8*X*Y^2 (6) - secp256k1_fe_negate(&t2, &t2, 1); // T2 = -9*X^4 (2) - secp256k1_fe_mul_int(&t3, 6); // T3 = 12*X*Y^2 (6) - secp256k1_fe_add(&t3, &t2); // T3 = 12*X*Y^2 - 9*X^4 (8) - secp256k1_fe_mul(&y, &t1, &t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) - secp256k1_fe_negate(&t2, &t4, 2); // T2 = -8*Y^4 (3) - secp256k1_fe_add(&y, &t2); // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) - fInfinity = false; + secp256k1_fe_mul_int(&t4, 2); // T4 = 8*Y^4 (2) + secp256k1_fe_mul(&t3, &a->x, &t3); // T3 = 2*X*Y^2 (1) + r->x = t3; + secp256k1_fe_mul_int(&r->x, 4); // X' = 8*X*Y^2 (4) + secp256k1_fe_negate(&r->x, &r->x, 4); // X' = -8*X*Y^2 (5) + secp256k1_fe_add(&r->x, &t2); // X' = 9*X^4 - 8*X*Y^2 (6) + secp256k1_fe_negate(&t2, &t2, 1); // T2 = -9*X^4 (2) + secp256k1_fe_mul_int(&t3, 6); // T3 = 12*X*Y^2 (6) + secp256k1_fe_add(&t3, &t2); // T3 = 12*X*Y^2 - 9*X^4 (8) + secp256k1_fe_mul(&r->y, &t1, &t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) + secp256k1_fe_negate(&t2, &t4, 2); // T2 = -8*Y^4 (3) + secp256k1_fe_add(&r->y, &t2); // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) + r->infinity = false; } -void GroupElemJac::SetAdd(const GroupElemJac &p, const GroupElemJac &q) { - if (p.fInfinity) { - *this = q; +void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) { + if (a->infinity) { + *r = *b; return; } - if (q.fInfinity) { - *this = p; + if (b->infinity) { + *r = *a; return; } - fInfinity = false; - const secp256k1_fe_t &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z; - secp256k1_fe_t z22; secp256k1_fe_sqr(&z22, &z2); - secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &z1); - secp256k1_fe_t u1; secp256k1_fe_mul(&u1, &x1, &z22); - secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &x2, &z12); - secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &y1, &z22); secp256k1_fe_mul(&s1, &s1, &z2); - secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &y2, &z12); secp256k1_fe_mul(&s2, &s2, &z1); + r->infinity = false; + secp256k1_fe_t z22; secp256k1_fe_sqr(&z22, &b->z); + secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); + secp256k1_fe_t u1; secp256k1_fe_mul(&u1, &a->x, &z22); + secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); + secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); + secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); secp256k1_fe_normalize(&u1); secp256k1_fe_normalize(&u2); if (secp256k1_fe_equal(&u1, &u2)) { secp256k1_fe_normalize(&s1); secp256k1_fe_normalize(&s2); if (secp256k1_fe_equal(&s1, &s2)) { - SetDouble(p); + secp256k1_gej_double(r, a); } else { - fInfinity = true; + r->infinity = true; } return; } secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); - secp256k1_fe_t r; secp256k1_fe_negate(&r, &s1, 1); secp256k1_fe_add(&r, &s2); - secp256k1_fe_t r2; secp256k1_fe_sqr(&r2, &r); + secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); + secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); - secp256k1_fe_mul(&z, &z1, &z2); secp256k1_fe_mul(&z, &z, &h); + secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h); secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); - x = t; secp256k1_fe_mul_int(&x, 2); secp256k1_fe_add(&x, &h3); secp256k1_fe_negate(&x, &x, 3); secp256k1_fe_add(&x, &r2); - secp256k1_fe_negate(&y, &x, 5); secp256k1_fe_add(&y, &t); secp256k1_fe_mul(&y, &y, &r); + r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); + secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); - secp256k1_fe_add(&y, &h3); + secp256k1_fe_add(&r->y, &h3); } -void GroupElemJac::SetAdd(const GroupElemJac &p, const GroupElem &q) { - if (p.fInfinity) { - x = q.x; - y = q.y; - fInfinity = q.fInfinity; - secp256k1_fe_set_int(&z, 1); +void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { + if (a->infinity) { + r->infinity = b->infinity; + r->x = b->x; + r->y = b->y; + secp256k1_fe_set_int(&r->z, 1); return; } - if (q.fInfinity) { - *this = p; + if (b->infinity) { + *r = *a; return; } - fInfinity = false; - const secp256k1_fe_t &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y; - secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &z1); - secp256k1_fe_t u1 = x1; secp256k1_fe_normalize(&u1); - secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &x2, &z12); - secp256k1_fe_t s1 = y1; secp256k1_fe_normalize(&s1); - secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &y2, &z12); secp256k1_fe_mul(&s2, &s2, &z1); + r->infinity = false; + secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); + secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize(&u1); + secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); + secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize(&s1); + secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); secp256k1_fe_normalize(&u1); secp256k1_fe_normalize(&u2); if (secp256k1_fe_equal(&u1, &u2)) { secp256k1_fe_normalize(&s1); secp256k1_fe_normalize(&s2); if (secp256k1_fe_equal(&s1, &s2)) { - SetDouble(p); + secp256k1_gej_double(r, a); } else { - fInfinity = true; + r->infinity = true; } return; } secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); - secp256k1_fe_t r; secp256k1_fe_negate(&r, &s1, 1); secp256k1_fe_add(&r, &s2); - secp256k1_fe_t r2; secp256k1_fe_sqr(&r2, &r); + secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); + secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); - z = p.z; secp256k1_fe_mul(&z, &z, &h); + r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); - x = t; secp256k1_fe_mul_int(&x, 2); secp256k1_fe_add(&x, &h3); secp256k1_fe_negate(&x, &x, 3); secp256k1_fe_add(&x, &r2); - secp256k1_fe_negate(&y, &x, 5); secp256k1_fe_add(&y, &t); secp256k1_fe_mul(&y, &y, &r); + r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); + secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); - secp256k1_fe_add(&y, &h3); + secp256k1_fe_add(&r->y, &h3); } -std::string GroupElemJac::ToString() const { - GroupElemJac cop = *this; - GroupElem aff; - cop.GetAffine(aff); - return aff.ToString(); +void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a) { + secp256k1_gej_t c = *a; + secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c); + secp256k1_ge_get_hex(r, rlen, &t); } -void GroupElem::SetJac(GroupElemJac &jac) { - jac.GetAffine(*this); +void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) { + const secp256k1_fe_t *beta = &secp256k1_ge_consts->beta; + *r = *a; + secp256k1_fe_mul(&r->x, &r->x, beta); } -static const unsigned char order_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, - 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, - 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41}; - -static const unsigned char g_x_[] = {0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC, - 0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07, - 0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9, - 0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98}; - -static const unsigned char g_y_[] = {0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65, - 0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8, - 0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19, - 0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8}; - -// properties of secp256k1's efficiently computable endomorphism -static const unsigned char lambda_[] = {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0, - 0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, - 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78, - 0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}; -static const unsigned char beta_[] = {0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10, - 0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9, - 0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95, - 0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee}; -static const unsigned char a1b2_[] = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd, - 0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}; -static const unsigned char b1_[] = {0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28, - 0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}; -static const unsigned char a2_[] = {0x01, - 0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6, - 0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}; - -GroupConstants::GroupConstants() { - secp256k1_num_init(&order); - secp256k1_num_init(&lambda); - secp256k1_num_init(&a1b2); - secp256k1_num_init(&b1); - secp256k1_num_init(&a2); - - secp256k1_fe_set_b32(&g_x, g_x_); - secp256k1_fe_set_b32(&g_y, g_y_); - secp256k1_fe_set_b32(&beta, beta_); - - g = GroupElem(g_x, g_y); - - secp256k1_num_set_bin(&order, order_, sizeof(order_)); - secp256k1_num_set_bin(&lambda, lambda_, sizeof(lambda_)); - secp256k1_num_set_bin(&a1b2, a1b2_, sizeof(a1b2_)); - secp256k1_num_set_bin(&b1, b1_, sizeof(b1_)); - secp256k1_num_set_bin(&a2, a2_, sizeof(a2_)); -} - -GroupConstants::~GroupConstants() { - secp256k1_num_free(&order); - secp256k1_num_free(&lambda); - secp256k1_num_free(&a1b2); - secp256k1_num_free(&b1); - secp256k1_num_free(&a2); -} - -const GroupConstants &GetGroupConst() { - static const GroupConstants group_const; - return group_const; -} - -void GroupElemJac::SetMulLambda(const GroupElemJac &p) { - const secp256k1_fe_t &beta = GetGroupConst().beta; - *this = p; - secp256k1_fe_mul(&x, &x, &beta); -} - -void SplitExp(const secp256k1_num_t &exp, secp256k1_num_t &exp1, secp256k1_num_t &exp2) { - const GroupConstants &c = GetGroupConst(); +void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a) { + const secp256k1_ge_consts_t *c = secp256k1_ge_consts; secp256k1_num_t bnc1, bnc2, bnt1, bnt2, bnn2; secp256k1_num_init(&bnc1); @@ -344,24 +267,24 @@ void SplitExp(const secp256k1_num_t &exp, secp256k1_num_t &exp1, secp256k1_num_t secp256k1_num_init(&bnt2); secp256k1_num_init(&bnn2); - secp256k1_num_copy(&bnn2, &c.order); + secp256k1_num_copy(&bnn2, &c->order); secp256k1_num_shift(&bnn2, 1); - secp256k1_num_mul(&bnc1, &exp, &c.a1b2); + secp256k1_num_mul(&bnc1, a, &c->a1b2); secp256k1_num_add(&bnc1, &bnc1, &bnn2); - secp256k1_num_div(&bnc1, &bnc1, &c.order); + secp256k1_num_div(&bnc1, &bnc1, &c->order); - secp256k1_num_mul(&bnc2, &exp, &c.b1); + secp256k1_num_mul(&bnc2, a, &c->b1); secp256k1_num_add(&bnc2, &bnc2, &bnn2); - secp256k1_num_div(&bnc2, &bnc2, &c.order); + secp256k1_num_div(&bnc2, &bnc2, &c->order); - secp256k1_num_mul(&bnt1, &bnc1, &c.a1b2); - secp256k1_num_mul(&bnt2, &bnc2, &c.a2); + secp256k1_num_mul(&bnt1, &bnc1, &c->a1b2); + secp256k1_num_mul(&bnt2, &bnc2, &c->a2); secp256k1_num_add(&bnt1, &bnt1, &bnt2); - secp256k1_num_sub(&exp1, &exp, &bnt1); - secp256k1_num_mul(&bnt1, &bnc1, &c.b1); - secp256k1_num_mul(&bnt2, &bnc2, &c.a1b2); - secp256k1_num_sub(&exp2, &bnt1, &bnt2); + secp256k1_num_sub(r1, a, &bnt1); + secp256k1_num_mul(&bnt1, &bnc1, &c->b1); + secp256k1_num_mul(&bnt2, &bnc2, &c->a1b2); + secp256k1_num_sub(r2, &bnt1, &bnt2); secp256k1_num_free(&bnc1); secp256k1_num_free(&bnc2); @@ -370,4 +293,87 @@ void SplitExp(const secp256k1_num_t &exp, secp256k1_num_t &exp1, secp256k1_num_t secp256k1_num_free(&bnn2); } +static const unsigned char secp256k1_ge_consts_order[] = { + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, + 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, + 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, + 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 +}; + +static const unsigned char secp256k1_ge_consts_g_x[] = { + 0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC, + 0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07, + 0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9, + 0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98 +}; + +static const unsigned char secp256k1_ge_consts_g_y[] = { + 0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65, + 0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8, + 0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19, + 0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8 +}; + +// properties of secp256k1's efficiently computable endomorphism +static const unsigned char secp256k1_ge_consts_lambda[] = { + 0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0, + 0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, + 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78, + 0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72 +}; +static const unsigned char secp256k1_ge_consts_beta[] = { + 0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10, + 0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9, + 0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95, + 0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee +}; +static const unsigned char secp256k1_ge_consts_a1b2[] = { + 0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd, + 0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15 +}; +static const unsigned char secp256k1_ge_consts_b1[] = { + 0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28, + 0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3 +}; +static const unsigned char secp256k1_ge_consts_a2[] = { + 0x01, + 0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6, + 0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8 +}; + +void static secp256k1_ge_start(void) { + if (secp256k1_ge_consts == NULL) { + secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)malloc(sizeof(secp256k1_ge_consts_t)); + secp256k1_num_init(&ret->order); + secp256k1_num_init(&ret->lambda); + secp256k1_num_init(&ret->a1b2); + secp256k1_num_init(&ret->a2); + secp256k1_num_init(&ret->b1); + secp256k1_num_set_bin(&ret->order, secp256k1_ge_consts_order, sizeof(secp256k1_ge_consts_order)); + secp256k1_num_set_bin(&ret->lambda, secp256k1_ge_consts_lambda, sizeof(secp256k1_ge_consts_lambda)); + secp256k1_num_set_bin(&ret->a1b2, secp256k1_ge_consts_a1b2, sizeof(secp256k1_ge_consts_a1b2)); + secp256k1_num_set_bin(&ret->a2, secp256k1_ge_consts_a2, sizeof(secp256k1_ge_consts_a2)); + secp256k1_num_set_bin(&ret->b1, secp256k1_ge_consts_b1, sizeof(secp256k1_ge_consts_b1)); + secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta); + secp256k1_fe_t g_x, g_y; + secp256k1_fe_set_b32(&g_x, secp256k1_ge_consts_g_x); + secp256k1_fe_set_b32(&g_y, secp256k1_ge_consts_g_y); + secp256k1_ge_set_xy(&ret->g, &g_x, &g_y); + secp256k1_ge_consts = ret; + } +} + +void static secp256k1_ge_stop(void) { + if (secp256k1_ge_consts != NULL) { + secp256k1_ge_consts_t *c = (secp256k1_ge_consts_t*)secp256k1_ge_consts; + secp256k1_num_free(&c->order); + secp256k1_num_free(&c->lambda); + secp256k1_num_free(&c->a1b2); + secp256k1_num_free(&c->a2); + secp256k1_num_free(&c->b1); + free((void*)c); + secp256k1_ge_consts = NULL; + } +} + } diff --git a/src/group.h b/src/group.h index 34b645a5f52..1db47448f36 100644 --- a/src/group.h +++ b/src/group.h @@ -1,8 +1,6 @@ #ifndef _SECP256K1_GROUP_ #define _SECP256K1_GROUP_ -#include - #include "num.h" #include "field.h" @@ -37,15 +35,16 @@ void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, cons int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a); void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a); -void static secp256k1_ge_set_gej(secp256k1_ge_t *r, const secp256k1_gej_t *a); +void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); void static secp256k1_gej_set_infinity(secp256k1_gej_t *r); void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); -void static secp256k1_gej_set_xo(secp256k1_gej_t *r, const secp256k1_fe_t *x, int compressed); +void static secp256k1_gej_set_xo(secp256k1_gej_t *r, const secp256k1_fe_t *x, int odd); void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a); void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a); void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a); +int static secp256k1_gej_is_valid(const secp256k1_gej_t *a); void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a); void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b); void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); @@ -55,108 +54,4 @@ void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, co } -namespace secp256k1 { - -class GroupElemJac; - -/** Defines a point on the secp256k1 curve (y^2 = x^3 + 7) */ -class GroupElem { -protected: - bool fInfinity; - secp256k1_fe_t x; - secp256k1_fe_t y; - -public: - - /** Creates the point at infinity */ - GroupElem(); - - /** Creates the point with given affine coordinates */ - GroupElem(const secp256k1_fe_t &xin, const secp256k1_fe_t &yin); - - /** Checks whether this is the point at infinity */ - bool IsInfinity() const; - - void SetNeg(const GroupElem &p); - - void GetX(secp256k1_fe_t &xout); - - void GetY(secp256k1_fe_t &yout); - - std::string ToString() const; - - void SetJac(GroupElemJac &jac); - - friend class GroupElemJac; -}; - -/** Represents a point on the secp256k1 curve, with jacobian coordinates */ -class GroupElemJac : private GroupElem { -protected: - secp256k1_fe_t z; - -public: - /** Creates the point at infinity */ - GroupElemJac(); - - /** Creates the point with given affine coordinates */ - GroupElemJac(const secp256k1_fe_t &xin, const secp256k1_fe_t &yin); - - GroupElemJac(const GroupElem &in); - - void SetJac(const GroupElemJac &jac); - - void SetAffine(const GroupElem &aff); - - /** Checks whether this is a non-infinite point on the curve */ - bool IsValid() const; - - /** Returns the affine coordinates of this point */ - void GetAffine(GroupElem &aff); - - void GetX(secp256k1_fe_t &xout); - void GetY(secp256k1_fe_t &yout); - - bool IsInfinity() const; - - void SetNeg(const GroupElemJac &p); - - /** Sets this point to have a given X coordinate & given Y oddness */ - void SetCompressed(const secp256k1_fe_t &xin, bool fOdd); - - /** Sets this point to be the EC double of another */ - void SetDouble(const GroupElemJac &p); - - /** Sets this point to be the EC addition of two others */ - void SetAdd(const GroupElemJac &p, const GroupElemJac &q); - - /** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */ - void SetAdd(const GroupElemJac &p, const GroupElem &q); - - std::string ToString() const; - - void SetMulLambda(const GroupElemJac &p); -}; - -class GroupConstants { -private: - secp256k1_fe_t g_x; - secp256k1_fe_t g_y; - -public: - secp256k1_num_t order; - GroupElem g; - secp256k1_fe_t beta; - secp256k1_num_t lambda, a1b2, b1, a2; - - GroupConstants(); - ~GroupConstants(); -}; - -const GroupConstants &GetGroupConst(); - -void SplitExp(const secp256k1_num_t &exp, secp256k1_num_t &exp1, secp256k1_num_t &exp2); - -} - #endif diff --git a/src/secp256k1.cpp b/src/secp256k1.cpp index bbbf03ba73b..a8d3860f634 100644 --- a/src/secp256k1.cpp +++ b/src/secp256k1.cpp @@ -10,11 +10,12 @@ namespace secp256k1 { extern "C" void secp256k1_start(void) { secp256k1_num_start(); secp256k1_fe_start(); - GetGroupConst(); + secp256k1_ge_start(); GetECMultConsts(); } extern "C" void secp256k1_stop(void) { + secp256k1_ge_stop(); secp256k1_fe_stop(); secp256k1_num_stop(); } @@ -24,7 +25,7 @@ extern "C" int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, cons secp256k1_num_t m; secp256k1_num_init(&m); Signature s; - GroupElemJac q; + secp256k1_gej_t q; secp256k1_num_set_bin(&m, msg, msglen); if (!ParsePubKey(q, pubkey, pubkeylen)) { ret = -1; diff --git a/src/tests.cpp b/src/tests.cpp index 0d5ca874b45..ac3f673450f 100644 --- a/src/tests.cpp +++ b/src/tests.cpp @@ -15,7 +15,7 @@ void test_run_ecmult_chain() { // random starting point A (on the curve) secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64); secp256k1_fe_t ay; secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64); - GroupElemJac a(ax,ay); + secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay); // two random initial factors xn and gn secp256k1_num_t xn; secp256k1_num_init(&xn); @@ -38,29 +38,32 @@ void test_run_ecmult_chain() { secp256k1_num_init(&ge); secp256k1_num_set_int(&ge, 0); // the point being computed - GroupElemJac x = a; - const secp256k1_num_t &order = GetGroupConst().order; + secp256k1_gej_t x = a; + const secp256k1_num_t *order = &secp256k1_ge_consts->order; for (int i=0; i<200*COUNT; i++) { // in each iteration, compute X = xn*X + gn*G; ECMult(x, x, xn, gn); // also compute ae and ge: the actual accumulated factors for A and G // if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) - secp256k1_num_mod_mul(&ae, &ae, &xn, &order); - secp256k1_num_mod_mul(&ge, &ge, &xn, &order); + secp256k1_num_mod_mul(&ae, &ae, &xn, order); + secp256k1_num_mod_mul(&ge, &ge, &xn, order); secp256k1_num_add(&ge, &ge, &gn); - secp256k1_num_mod(&ge, &ge, &order); + secp256k1_num_mod(&ge, &ge, order); // modify xn and gn - secp256k1_num_mod_mul(&xn, &xn, &xf, &order); - secp256k1_num_mod_mul(&gn, &gn, &gf, &order); + secp256k1_num_mod_mul(&xn, &xn, &xf, order); + secp256k1_num_mod_mul(&gn, &gn, &gf, order); } - std::string res = x.ToString(); + char res[132]; int resl = 132; + secp256k1_gej_get_hex(res, &resl, &x); if (COUNT == 100) { - assert(res == "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)"); + assert(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0); } // redo the computation, but directly with the resulting ae and ge coefficients: - GroupElemJac x2; ECMult(x2, a, ae, ge); - std::string res2 = x2.ToString(); - assert(res == res2); + secp256k1_gej_t x2; ECMult(x2, a, ae, ge); + char res2[132]; int resl2 = 132; + secp256k1_gej_get_hex(res2, &resl2, &x2); + assert(strcmp(res, res2) == 0); + assert(strlen(res) == 131); secp256k1_num_free(&xn); secp256k1_num_free(&gn); secp256k1_num_free(&xf); @@ -69,25 +72,25 @@ void test_run_ecmult_chain() { secp256k1_num_free(&ge); } -void test_point_times_order(const GroupElemJac &point) { +void test_point_times_order(const secp256k1_gej_t &point) { // either the point is not on the curve, or multiplying it by the order results in O - if (!point.IsValid()) + if (!secp256k1_gej_is_valid(&point)) return; - const GroupConstants &c = GetGroupConst(); + const secp256k1_num_t *order = &secp256k1_ge_consts->order; secp256k1_num_t zero; secp256k1_num_init(&zero); secp256k1_num_set_int(&zero, 0); - GroupElemJac res; - ECMult(res, point, c.order, zero); // calc res = order * point + 0 * G; - assert(res.IsInfinity()); + secp256k1_gej_t res; + ECMult(res, point, *order, zero); // calc res = order * point + 0 * G; + assert(secp256k1_gej_is_infinity(&res)); secp256k1_num_free(&zero); } void test_run_point_times_order() { secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2); for (int i=0; i<500; i++) { - GroupElemJac j; j.SetCompressed(x, true); + secp256k1_gej_t j; secp256k1_gej_set_xo(&j, &x, true); test_point_times_order(j); secp256k1_fe_sqr(&x, &x); } @@ -147,14 +150,14 @@ void test_run_wnaf() { } void test_ecdsa_sign_verify() { - const GroupConstants &c = GetGroupConst(); + const secp256k1_ge_consts_t &c = *secp256k1_ge_consts; secp256k1_num_t msg, key, nonce; secp256k1_num_init(&msg); secp256k1_num_set_rand(&msg, &c.order); secp256k1_num_init(&key); secp256k1_num_set_rand(&key, &c.order); secp256k1_num_init(&nonce); - GroupElemJac pub; ECMultBase(pub, key); + secp256k1_gej_t pub; ECMultBase(pub, key); Signature sig; do { secp256k1_num_set_rand(&nonce, &c.order); @@ -176,12 +179,15 @@ void test_run_ecdsa_sign_verify() { int main(void) { secp256k1_num_start(); secp256k1_fe_start(); + secp256k1_ge_start(); test_run_wnaf(); test_run_point_times_order(); test_run_ecmult_chain(); test_run_ecdsa_sign_verify(); + secp256k1_ge_stop(); secp256k1_fe_stop(); + secp256k1_num_stop(); return 0; }