feefrac: support both rounding up and down for Evaluate

Co-Authored-By: l0rinc <pap.lorinc@gmail.com>
This commit is contained in:
Pieter Wuille 2024-07-30 11:48:32 -04:00
parent 1f142c8b88
commit eff5bf7d67
3 changed files with 118 additions and 62 deletions

View file

@ -17,26 +17,43 @@ BOOST_AUTO_TEST_CASE(feefrac_operators)
FeeFrac empty{0, 0};
FeeFrac zero_fee{0, 1}; // zero-fee allowed
BOOST_CHECK_EQUAL(zero_fee.EvaluateFee(0), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFee(1), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFee(1000000), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFee(0x7fffffff), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeDown(0), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeDown(1), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeDown(1000000), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeDown(0x7fffffff), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeUp(0), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeUp(1), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeUp(1000000), 0);
BOOST_CHECK_EQUAL(zero_fee.EvaluateFeeUp(0x7fffffff), 0);
BOOST_CHECK_EQUAL(p1.EvaluateFee(0), 0);
BOOST_CHECK_EQUAL(p1.EvaluateFee(1), 10);
BOOST_CHECK_EQUAL(p1.EvaluateFee(100000000), 1000000000);
BOOST_CHECK_EQUAL(p1.EvaluateFee(0x7fffffff), int64_t(0x7fffffff) * 10);
BOOST_CHECK_EQUAL(p1.EvaluateFeeDown(0), 0);
BOOST_CHECK_EQUAL(p1.EvaluateFeeDown(1), 10);
BOOST_CHECK_EQUAL(p1.EvaluateFeeDown(100000000), 1000000000);
BOOST_CHECK_EQUAL(p1.EvaluateFeeDown(0x7fffffff), int64_t(0x7fffffff) * 10);
BOOST_CHECK_EQUAL(p1.EvaluateFeeUp(0), 0);
BOOST_CHECK_EQUAL(p1.EvaluateFeeUp(1), 10);
BOOST_CHECK_EQUAL(p1.EvaluateFeeUp(100000000), 1000000000);
BOOST_CHECK_EQUAL(p1.EvaluateFeeUp(0x7fffffff), int64_t(0x7fffffff) * 10);
FeeFrac neg{-1001, 100};
BOOST_CHECK_EQUAL(neg.EvaluateFee(0), 0);
BOOST_CHECK_EQUAL(neg.EvaluateFee(1), -11);
BOOST_CHECK_EQUAL(neg.EvaluateFee(2), -21);
BOOST_CHECK_EQUAL(neg.EvaluateFee(3), -31);
BOOST_CHECK_EQUAL(neg.EvaluateFee(100), -1001);
BOOST_CHECK_EQUAL(neg.EvaluateFee(101), -1012);
BOOST_CHECK_EQUAL(neg.EvaluateFee(100000000), -1001000000);
BOOST_CHECK_EQUAL(neg.EvaluateFee(100000001), -1001000011);
BOOST_CHECK_EQUAL(neg.EvaluateFee(0x7fffffff), -21496311307);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(0), 0);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(1), -11);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(2), -21);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(3), -31);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(100), -1001);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(101), -1012);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(100000000), -1001000000);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(100000001), -1001000011);
BOOST_CHECK_EQUAL(neg.EvaluateFeeDown(0x7fffffff), -21496311307);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(0), 0);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(1), -10);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(2), -20);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(3), -30);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(100), -1001);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(101), -1011);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(100000000), -1001000000);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(100000001), -1001000010);
BOOST_CHECK_EQUAL(neg.EvaluateFeeUp(0x7fffffff), -21496311306);
BOOST_CHECK(empty == FeeFrac{}); // same as no-args
@ -88,15 +105,22 @@ BOOST_AUTO_TEST_CASE(feefrac_operators)
BOOST_CHECK(oversized_1 << oversized_2);
BOOST_CHECK(oversized_1 != oversized_2);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFee(0), 0);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFee(1), 1152921);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFee(2), 2305843);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFee(1548031267), 1784758530396540);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeDown(0), 0);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeDown(1), 1152921);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeDown(2), 2305843);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeDown(1548031267), 1784758530396540);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeUp(0), 0);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeUp(1), 1152922);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeUp(2), 2305843);
BOOST_CHECK_EQUAL(oversized_1.EvaluateFeeUp(1548031267), 1784758530396541);
// Test cases on the threshold where FeeFrac::EvaluateFee start using Mul/Div.
BOOST_CHECK_EQUAL(FeeFrac(0x1ffffffff, 123456789).EvaluateFee(98765432), 6871947728);
BOOST_CHECK_EQUAL(FeeFrac(0x200000000, 123456789).EvaluateFee(98765432), 6871947729);
BOOST_CHECK_EQUAL(FeeFrac(0x200000001, 123456789).EvaluateFee(98765432), 6871947730);
// Test cases on the threshold where FeeFrac::Evaluate start using Mul/Div.
BOOST_CHECK_EQUAL(FeeFrac(0x1ffffffff, 123456789).EvaluateFeeDown(98765432), 6871947728);
BOOST_CHECK_EQUAL(FeeFrac(0x200000000, 123456789).EvaluateFeeDown(98765432), 6871947729);
BOOST_CHECK_EQUAL(FeeFrac(0x200000001, 123456789).EvaluateFeeDown(98765432), 6871947730);
BOOST_CHECK_EQUAL(FeeFrac(0x1ffffffff, 123456789).EvaluateFeeUp(98765432), 6871947729);
BOOST_CHECK_EQUAL(FeeFrac(0x200000000, 123456789).EvaluateFeeUp(98765432), 6871947730);
BOOST_CHECK_EQUAL(FeeFrac(0x200000001, 123456789).EvaluateFeeUp(98765432), 6871947731);
// Tests paths that use double arithmetic
FeeFrac busted{(static_cast<int64_t>(INT32_MAX)) + 1, INT32_MAX};
@ -108,12 +132,18 @@ BOOST_AUTO_TEST_CASE(feefrac_operators)
BOOST_CHECK(max_fee <= max_fee);
BOOST_CHECK(max_fee >= max_fee);
BOOST_CHECK_EQUAL(max_fee.EvaluateFee(0), 0);
BOOST_CHECK_EQUAL(max_fee.EvaluateFee(1), 977888);
BOOST_CHECK_EQUAL(max_fee.EvaluateFee(2), 1955777);
BOOST_CHECK_EQUAL(max_fee.EvaluateFee(3), 2933666);
BOOST_CHECK_EQUAL(max_fee.EvaluateFee(1256796054), 1229006664189047);
BOOST_CHECK_EQUAL(max_fee.EvaluateFee(INT32_MAX), 2100000000000000);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeDown(0), 0);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeDown(1), 977888);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeDown(2), 1955777);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeDown(3), 2933666);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeDown(1256796054), 1229006664189047);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeDown(INT32_MAX), 2100000000000000);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeUp(0), 0);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeUp(1), 977889);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeUp(2), 1955778);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeUp(3), 2933667);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeUp(1256796054), 1229006664189048);
BOOST_CHECK_EQUAL(max_fee.EvaluateFeeUp(INT32_MAX), 2100000000000000);
FeeFrac max_fee2{1, 1};
BOOST_CHECK(max_fee >= max_fee2);

View file

@ -109,20 +109,24 @@ FUZZ_TARGET(feefrac_div_fallback)
{
// Verify the behavior of FeeFrac::DivFallback over all possible inputs.
// Construct a 96-bit signed value num, and positive 31-bit value den.
// Construct a 96-bit signed value num, a positive 31-bit value den, and rounding mode.
FuzzedDataProvider provider(buffer.data(), buffer.size());
auto num_high = provider.ConsumeIntegral<int64_t>();
auto num_low = provider.ConsumeIntegral<uint32_t>();
std::pair<int64_t, uint32_t> num{num_high, num_low};
auto den = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
auto round_down = provider.ConsumeBool();
// Predict the sign of the actual result.
bool is_negative = num_high < 0;
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
// value of the quotient is the rounded-up quotient of the absolute values.
// Evaluate absolute value using arith_uint256. If the actual result is negative and we are
// rounding down, or positive and we are rounding up, the absolute value of the quotient is
// the rounded-up quotient of the absolute values.
auto num_abs = Abs256(num);
auto den_abs = Abs256(den);
auto quot_abs = is_negative ? (num_abs + den_abs - 1) / den_abs : num_abs / den_abs;
auto quot_abs = (is_negative == round_down) ?
(num_abs + den_abs - 1) / den_abs :
num_abs / den_abs;
// If the result is not representable by an int64_t, bail out.
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
@ -130,8 +134,8 @@ FUZZ_TARGET(feefrac_div_fallback)
}
// Verify the behavior of FeeFrac::DivFallback.
auto res = FeeFrac::DivFallback(num, den);
assert((res < 0) == is_negative);
auto res = FeeFrac::DivFallback(num, den, round_down);
assert(res == 0 || (res < 0) == is_negative);
assert(Abs256(res) == quot_abs);
}
@ -142,41 +146,47 @@ FUZZ_TARGET(feefrac_mul_div)
// - The combination of FeeFrac::MulFallback + FeeFrac::DivFallback.
// - FeeFrac::Evaluate.
// Construct a 32-bit signed multiplicand, a 64-bit signed multiplicand, and a positive 31-bit
// divisor.
// Construct a 32-bit signed multiplicand, a 64-bit signed multiplicand, a positive 31-bit
// divisor, and a rounding mode.
FuzzedDataProvider provider(buffer.data(), buffer.size());
auto mul32 = provider.ConsumeIntegral<int32_t>();
auto mul64 = provider.ConsumeIntegral<int64_t>();
auto div = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
auto round_down = provider.ConsumeBool();
// Predict the sign of the overall result.
bool is_negative = ((mul32 < 0) && (mul64 > 0)) || ((mul32 > 0) && (mul64 < 0));
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
// value of the quotient is the rounded-up quotient of the absolute values.
// Evaluate absolute value using arith_uint256. If the actual result is negative and we are
// rounding down or positive and we rounding up, the absolute value of the quotient is the
// rounded-up quotient of the absolute values.
auto prod_abs = Abs256(mul32) * Abs256(mul64);
auto div_abs = Abs256(div);
auto quot_abs = is_negative ? (prod_abs + div_abs - 1) / div_abs : prod_abs / div_abs;
auto quot_abs = (is_negative == round_down) ?
(prod_abs + div_abs - 1) / div_abs :
prod_abs / div_abs;
// If the result is not representable by an int64_t, bail out.
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
// If 0 <= mul32 <= div, then the result is guaranteed to be representable. In the context
// of the Evaluate call below, this corresponds to 0 <= at_size <= feefrac.size.
// of the Evaluate{Down,Up} calls below, this corresponds to 0 <= at_size <= feefrac.size.
assert(mul32 < 0 || mul32 > div);
return;
}
// Verify the behavior of FeeFrac::Mul + FeeFrac::Div.
auto res = FeeFrac::Div(FeeFrac::Mul(mul64, mul32), div);
assert((res < 0) == is_negative);
auto res = FeeFrac::Div(FeeFrac::Mul(mul64, mul32), div, round_down);
assert(res == 0 || (res < 0) == is_negative);
assert(Abs256(res) == quot_abs);
// Verify the behavior of FeeFrac::MulFallback + FeeFrac::DivFallback.
auto res_fallback = FeeFrac::DivFallback(FeeFrac::MulFallback(mul64, mul32), div);
auto res_fallback = FeeFrac::DivFallback(FeeFrac::MulFallback(mul64, mul32), div, round_down);
assert(res == res_fallback);
// Verify the behavior of FeeFrac::Evaluate.
// Verify the behavior of FeeFrac::Evaluate{Down,Up}.
if (mul32 > 0) {
auto res_fee = FeeFrac{mul64, div}.EvaluateFee(mul32);
auto res_fee = round_down ?
FeeFrac{mul64, div}.EvaluateFeeDown(mul32) :
FeeFrac{mul64, div}.EvaluateFeeUp(mul32);
assert(res == res_fee);
}
}

View file

@ -47,14 +47,15 @@ struct FeeFrac
return {high + (low >> 32), static_cast<uint32_t>(low)};
}
/** Helper function for 96/32 signed division, rounding towards negative infinity. This is a
* fallback version, separate so it can be tested on platforms where it isn't actually needed.
/** Helper function for 96/32 signed division, rounding towards negative infinity (if
* round_down) or positive infinity (if !round_down). This is a fallback version, separate so
* that it can be tested on platforms where it isn't actually needed.
*
* The exact behavior with negative n does not really matter, but this implementation chooses
* to always round down, for consistency and testability.
* to be consistent for testability reasons.
*
* The result must fit in an int64_t, and d must be strictly positive. */
static inline int64_t DivFallback(std::pair<int64_t, uint32_t> n, int32_t d) noexcept
static inline int64_t DivFallback(std::pair<int64_t, uint32_t> n, int32_t d, bool round_down) noexcept
{
Assume(d > 0);
// Compute quot_high = n.first / d, so the result becomes
@ -64,11 +65,13 @@ struct FeeFrac
// Evaluate the parenthesized expression above, so the result becomes
// n_low / d + (quot_high * 2**32)
int64_t n_low = ((n.first % d) << 32) + n.second;
// Evaluate the division so the result becomes quot_low + quot_high * 2**32. We need this
// division to round down however, while the / operator rounds towards zero. In case n_low
// is negative and not a multiple of size, we thus need a correction.
// Evaluate the division so the result becomes quot_low + quot_high * 2**32. It is possible
// that the / operator here rounds in the wrong direction (if n_low is not a multiple of
// size, and is (if round_down) negative, or (if !round_down) positive). If so, make a
// correction.
int64_t quot_low = n_low / d;
quot_low -= (n_low % d) < 0;
int32_t mod_low = n_low % d;
quot_low += (mod_low > 0) - (mod_low && round_down);
// Combine and return the result
return (quot_high << 32) + quot_low;
}
@ -85,13 +88,14 @@ struct FeeFrac
* version relying on __int128.
*
* The result must fit in an int64_t, and d must be strictly positive. */
static inline int64_t Div(__int128 n, int32_t d) noexcept
static inline int64_t Div(__int128 n, int32_t d, bool round_down) noexcept
{
Assume(d > 0);
// Compute the division.
int64_t quot = n / d;
// Make it round down.
return quot - ((n % d) < 0);
int32_t mod = n % d;
// Correct result if the / operator above rounded in the wrong direction.
return quot + (mod > 0) - (mod && round_down);
}
#else
static constexpr auto Mul = MulFallback;
@ -186,23 +190,35 @@ struct FeeFrac
/** Compute the fee for a given size `at_size` using this object's feerate.
*
* This effectively corresponds to evaluating (this->fee * at_size) / this->size, with the
* result rounded down (even for negative feerates).
* result rounded towards negative infinity (if RoundDown) or towards positive infinity
* (if !RoundDown).
*
* Requires this->size > 0, at_size >= 0, and that the correct result fits in a int64_t. This
* is guaranteed to be the case when 0 <= at_size <= this->size.
*/
template<bool RoundDown>
int64_t EvaluateFee(int32_t at_size) const noexcept
{
Assume(size > 0);
Assume(at_size >= 0);
if (fee >= 0 && fee < 0x200000000) [[likely]] {
// Common case where (this->fee * at_size) is guaranteed to fit in a uint64_t.
return (uint64_t(fee) * at_size) / uint32_t(size);
if constexpr (RoundDown) {
return (uint64_t(fee) * at_size) / uint32_t(size);
} else {
return (uint64_t(fee) * at_size + size - 1U) / uint32_t(size);
}
} else {
// Otherwise, use Mul and Div.
return Div(Mul(fee, at_size), size);
return Div(Mul(fee, at_size), size, RoundDown);
}
}
public:
/** Compute the fee for a given size `at_size` using this object's feerate, rounding down. */
int64_t EvaluateFeeDown(int32_t at_size) const noexcept { return EvaluateFee<true>(at_size); }
/** Compute the fee for a given size `at_size` using this object's feerate, rounding up. */
int64_t EvaluateFeeUp(int32_t at_size) const noexcept { return EvaluateFee<false>(at_size); }
};
/** Compare the feerate diagrams implied by the provided sorted chunks data.