mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-11 12:22:39 -03:00
Add merkle.{h,cpp}, generic merkle root/branch algorithm
This commit is contained in:
parent
93e0514fd0
commit
ee60e5625b
3 changed files with 171 additions and 0 deletions
|
@ -100,6 +100,7 @@ BITCOIN_CORE_H = \
|
|||
compat/sanity.h \
|
||||
compressor.h \
|
||||
consensus/consensus.h \
|
||||
consensus/merkle.h \
|
||||
consensus/params.h \
|
||||
consensus/validation.h \
|
||||
core_io.h \
|
||||
|
@ -268,6 +269,7 @@ libbitcoin_common_a_SOURCES = \
|
|||
chainparams.cpp \
|
||||
coins.cpp \
|
||||
compressor.cpp \
|
||||
consensus/merkle.cpp \
|
||||
core_read.cpp \
|
||||
core_write.cpp \
|
||||
hash.cpp \
|
||||
|
|
152
src/consensus/merkle.cpp
Normal file
152
src/consensus/merkle.cpp
Normal file
|
@ -0,0 +1,152 @@
|
|||
#include "merkle.h"
|
||||
#include "hash.h"
|
||||
#include "utilstrencodings.h"
|
||||
|
||||
/* WARNING! If you're reading this because you're learning about crypto
|
||||
and/or designing a new system that will use merkle trees, keep in mind
|
||||
that the following merkle tree algorithm has a serious flaw related to
|
||||
duplicate txids, resulting in a vulnerability (CVE-2012-2459).
|
||||
|
||||
The reason is that if the number of hashes in the list at a given time
|
||||
is odd, the last one is duplicated before computing the next level (which
|
||||
is unusual in Merkle trees). This results in certain sequences of
|
||||
transactions leading to the same merkle root. For example, these two
|
||||
trees:
|
||||
|
||||
A A
|
||||
/ \ / \
|
||||
B C B C
|
||||
/ \ | / \ / \
|
||||
D E F D E F F
|
||||
/ \ / \ / \ / \ / \ / \ / \
|
||||
1 2 3 4 5 6 1 2 3 4 5 6 5 6
|
||||
|
||||
for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and
|
||||
6 are repeated) result in the same root hash A (because the hash of both
|
||||
of (F) and (F,F) is C).
|
||||
|
||||
The vulnerability results from being able to send a block with such a
|
||||
transaction list, with the same merkle root, and the same block hash as
|
||||
the original without duplication, resulting in failed validation. If the
|
||||
receiving node proceeds to mark that block as permanently invalid
|
||||
however, it will fail to accept further unmodified (and thus potentially
|
||||
valid) versions of the same block. We defend against this by detecting
|
||||
the case where we would hash two identical hashes at the end of the list
|
||||
together, and treating that identically to the block having an invalid
|
||||
merkle root. Assuming no double-SHA256 collisions, this will detect all
|
||||
known ways of changing the transactions without affecting the merkle
|
||||
root.
|
||||
*/
|
||||
|
||||
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
|
||||
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
|
||||
if (pbranch) pbranch->clear();
|
||||
if (leaves.size() == 0) {
|
||||
if (pmutated) *pmutated = false;
|
||||
if (proot) *proot = uint256();
|
||||
return;
|
||||
}
|
||||
bool mutated = false;
|
||||
// count is the number of leaves processed so far.
|
||||
uint32_t count = 0;
|
||||
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
||||
// level (0 being the leaves).
|
||||
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
||||
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
||||
// the last leaf. The other inner entries are undefined.
|
||||
uint256 inner[32];
|
||||
// Which position in inner is a hash that depends on the matching leaf.
|
||||
int matchlevel = -1;
|
||||
// First process all leaves into 'inner' values.
|
||||
while (count < leaves.size()) {
|
||||
uint256 h = leaves[count];
|
||||
bool matchh = count == branchpos;
|
||||
count++;
|
||||
int level;
|
||||
// For each of the lower bits in count that are 0, do 1 step. Each
|
||||
// corresponds to an inner value that existed before processing the
|
||||
// current leaf, and each needs a hash to combine it.
|
||||
for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
mutated |= (inner[level] == h);
|
||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||
}
|
||||
// Store the resulting hash at inner position level.
|
||||
inner[level] = h;
|
||||
if (matchh) {
|
||||
matchlevel = level;
|
||||
}
|
||||
}
|
||||
// Do a final 'sweep' over the rightmost branch of the tree to process
|
||||
// odd levels, and reduce everything to a single top value.
|
||||
// Level is the level (counted from the bottom) up to which we've sweeped.
|
||||
int level = 0;
|
||||
// As long as bit number level in count is zero, skip it. It means there
|
||||
// is nothing left at this level.
|
||||
while (!(count & (((uint32_t)1) << level))) {
|
||||
level++;
|
||||
}
|
||||
uint256 h = inner[level];
|
||||
bool matchh = matchlevel == level;
|
||||
while (count != (((uint32_t)1) << level)) {
|
||||
// If we reach this point, h is an inner value that is not the top.
|
||||
// We combine it with itself (Bitcoin's special rule for odd levels in
|
||||
// the tree) to produce a higher level one.
|
||||
if (pbranch && matchh) {
|
||||
pbranch->push_back(h);
|
||||
}
|
||||
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||
// Increment count to the value it would have if two entries at this
|
||||
// level had existed.
|
||||
count += (((uint32_t)1) << level);
|
||||
level++;
|
||||
// And propagate the result upwards accordingly.
|
||||
while (!(count & (((uint32_t)1) << level))) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||
level++;
|
||||
}
|
||||
}
|
||||
// Return result.
|
||||
if (pmutated) *pmutated = mutated;
|
||||
if (proot) *proot = h;
|
||||
}
|
||||
|
||||
uint256 ComputeMerkleRoot(const std::vector<uint256>& leaves, bool* mutated) {
|
||||
uint256 hash;
|
||||
MerkleComputation(leaves, &hash, mutated, -1, NULL);
|
||||
return hash;
|
||||
}
|
||||
|
||||
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
|
||||
std::vector<uint256> ret;
|
||||
MerkleComputation(leaves, NULL, NULL, position, &ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
|
||||
uint256 hash = leaf;
|
||||
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
|
||||
if (nIndex & 1) {
|
||||
hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
|
||||
} else {
|
||||
hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
|
||||
}
|
||||
nIndex >>= 1;
|
||||
}
|
||||
return hash;
|
||||
}
|
17
src/consensus/merkle.h
Normal file
17
src/consensus/merkle.h
Normal file
|
@ -0,0 +1,17 @@
|
|||
// Copyright (c) 2015 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_MERKLE
|
||||
#define BITCOIN_MERKLE
|
||||
|
||||
#include <stdint.h>
|
||||
#include <vector>
|
||||
|
||||
#include "uint256.h"
|
||||
|
||||
uint256 ComputeMerkleRoot(const std::vector<uint256>& leaves, bool* mutated = NULL);
|
||||
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position);
|
||||
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& branch, uint32_t position);
|
||||
|
||||
#endif
|
Loading…
Reference in a new issue